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Abstract 

Theoretical and experimental advances in determina- 
tion of three-phase invariants by multiple-beam X-ray 
diffraction are reviewed. The fundamental physics and 
mathematical analyses are explained. Plane-wave dy- 
namical theory for the interpretation of multiple-beam 
interference is summarized. New results of its applica- 
tions to the solution of the enantiomorphism problem of 
light-atom structures and to the solution of the structure 
of macromolecules by means of measured phases in con- 
junction with statistical methods are reported. Practical 
aspects of applying the three-beam diffraction technique 
to proteins are emphasized. 

After obtaining his first degree in material sciences, 
Edgar Weckert received his doctorate in 1988 from the 
Faculty of Mathematics and Physics at the University of 
Erlangen, Germany. His thesis on three-beam X-ray 
diffraction using synchrotron radiation was the first 
application to the solution of the enantiomorphism 
problem of non-centrosymmetric low-Z structures. Since 
then, while a postdoctoral assistant at the University 
of Karlsruhe, he has been developing this technique 
both theoretically and experimentally and applying it to 
aperiodic structures and macromolecular crystals. His 
work on phasing macromolecular structures by means 
of  physically estimated reflection phases in conjunction 
with maximum-entropy methods very recently won him 
the first Max yon Laue prize of  the Deutsche Gesellschaft 
far Kristallographie awarded to young scientists. 

Kurt Hammer received his doctorate in 1971 and his 
habilitation in 1978 from the Faculty of Mathematics 
and Physics of the University of Erlangen, Germany, 
where he investigated exciton polaritons in II-VI com- 
pounds under the supervision of  Professor Erich Mollwo. 
Since then, he has been working on multiple-beam X-ray 
diffraction and applying this technique to the experi- 
mental determination of reflection phases. For the last 
four years, he has been at the University of Karlsruhe, 
Germany, as a full professor for crystallography. 

1. Introduction 

Both theoretical and experimental advances in various 
techniques have led to several powerful methods of sur- 
mounting the phase problem. Nowadays, the solution of 
even complex crystal structures like proteins is possible. 
In a recently published book (Woolfson & Fan, 1995), 
the authors brought together all the methods that have 
been and are being used. Some of the most effective 
ways are those that use experimental or physical data 
in conjunction with Patterson and statistical, i.e. direct 
and maximum-entropy, methods. Obviously, the most 
direct physical data for structure solution are the phases 
of reflections. 

It has long been recognized that the only way to 
acquire phase information is by means of an interference 
experiment. The resultant amplitude and thus the inten- 
sity when waves are coherently superimposed depends 
on the phase difference of the individual waves. This is 
the principle of holography. Basic ideas how this can be 
achieved for X-rays were first published by Ott (1938), 
Bijvoet & MacGillavry (1939) and Lipscomb (1949). 
Bijvoet & MacGillavry stated that the intensity variation 
across a Kossel line due to the interference between 
the directly emitted and the diffracted waves of internal 
X-ray sources, which are atoms excited for fluorescence, 
contains phase information. Ott (1938) calculated the 
fine structure across a Kossel line and found that the 
interference contrast - he called it Helldunkeleffekt - 
depends uniquely on the phase of the structure factor. 
The intensity profiles are very similar to the O-scan 
profiles discussed in this paper. 

Lipscomb (1949) proposed to exploit the intensity 
change of a Bragg reflection when an additional re- 
flection is simultaneously excited so that three beams, 
the transmitted and two diffracted ones, propagate in 
the crystal. Such a situation is described as three-beam 
diffraction. In 1937, Renninger had already shown that 
in such a situation the intensities of extinguished or 
weak reflections are drastically enhanced if a second 
strong reflection is simultaneously excited; so-called 
Umweganregung peaks occurred. If both Bragg reflec- 
tions are comparably strong, then the coherent dynamical 
interaction of the excited wavefields leads to intensity 

© 1997 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

Acta Cr).,stallographica Section A 
ISSN 0108-7673 © 1997 



EDGAR WECKERT AND KURT HUMMER 109 

changes of each Bragg reflection, which are mainly 
due to interference effects. That interference contrast 
contains information on the phase difference of the 
interfering waves. Simple considerations by Lipscomb 
revealed that this information is a so-called triplet phase 
relationship or three-phase invariant, which is indepen- 
dent of the choice of the origin and is therefore a 
physically measurable quantity. 

The development of the multiple-beam X-ray diffrac- 
tion technique for experimental phase determination has 
been reviewed by Chang (1984, 1987) and Colella 
(1995). Surprisingly, no experimental results on this 
subject were published after Lipscomb's short commu- 
nication until the middle of the 70s when the discussion 
of the X-ray case was kindled again by papers of Colella 
(1974) and Post (1975, 1977, 1979). Earlier theoretical 
and experimental work was concerned with the inves- 
tigation of the anomalous transmission of X-rays, that 
is the Borrmann effect, which is enhanced in the case 
of simultaneously excited reflections (Ewald & Heno, 
1968). For this it is sufficient to know the wave vec- 
tors, i.e. the eigenvalues, of the fundamental dynamical 
equations. However, the eigenvectors, amplitudes and 
phases, of the waves are also needed for the calculation 
of multiple-beam interference effects. 

This article has different aims. In §2, a general 
solution of the plane-wave dynamical theory of N-beam 
X-ray diffraction is formally outlined. It is the basis 
of the computational analysis of N-beam diffraction 
intensities. It may be also of interest to those working 
in that field or in a related field when N-beam effects 
occur. In §3, the use of three-beam diffraction for the 
physical determination of phase relationships between 
Bragg reflections, so-called three-phase structure invari- 
ants or triplet phases, is discussed. §§3.1 and 3.2, in 
particular, should also give the non-expert an idea of 
the basic physics underlying the experiments for phase 
determination; it is pointed out that it is the three-beam 
interference effect that contains the phase information. 
For this readership, it is not necessary to read §2.2. The 
rest of §3 deals with new results concerning the influence 
of the diffraction geometry - Laue transmission and 
Bragg reflection - and Pendellrsung effects for the 
interpretation of three-beam O-scan profiles with respect 
to the phase determination. The last sections, §§5 to 7, 
should give the crystallographic community an idea of 
what can be done with this comparatively new technique 
with the emphasis on the application to macromolecular 
structures. 

2. The basis of multiple-beam diffraction theory 

2.1. Fundamental  dynamical equations and their 
interpretation 

The solution of the propagation equation of X-rays in 
crystals deduced from Maxwell's equations leads to the 

so-called fundamental equations of dynamical theory: 

D(hm) : {K(hm)2/[K(hm)  2 - ko2]} 

× ~ x ( h  m - h~)D(h~)[m ]. (1) 
t /  

It can be rewritten in the form of an eigenvalue equation 

{[k2o- K(h,~)2]/K(hm)2}D(hm) 

+ ~ X(hm - hn)D(hn)[m ] -- 0. (2) 
t~ 

These equations describe the elementary concepts of 
crystal optics for X-rays such as specular reflection, 
refraction, diffraction and absorption. 

In deriving (1), von Laue's optical model for X-rays 
is adopted, namely, the polarizability is translationally 
periodic since electromagnetic waves with wavelengths 
in the range of interatomic distances will resolve the 
three-dimensional periodicity of the electron density. 
Hence, the dielectric susceptibility x(r)  can be expanded 
in a Fourier series 

x(r) = ~--] x(h. )  exp(-27rih • r), (3) 
t! 

where n runs over all reciprocal-lattice vectors (r.l.v.) 
h n. The usual structure factors are related to its Fourier 
components by 

x(h  n) = -rF(h.), (4) 

where 

1~= (r,A2/TrV,); F ~ "  1 0  - 6  - -  10 -7. (5) 

r, = 2.8 × 10-15 m is the classical electron radius and 
V~ is the volume of the unit cell. Consequently, the 
amplitudes of the proper wavefields must have the same 
periodicity as the crystal lattice and they are given by 
an Ewald-Bloch wave Ansatz: 

D(r) = ~ D(h,,) exp[-27riK(h,,) • r], (6) 
?l 

where 
K ( h , , ) = K ( 0 ) + h , ,  (7) 

is satisfied. 
Equations (1) to (7) express the self-consistent dy- 

namical balance of the individual component waves 
(Bragg waves) that differ by r.l.v.'s. Kato (1992) pointed 
out that 'Self-consistency is an important concept in 
physics. P. P. Ewald was one of the few pioneers who 
recognized its importance and knew how to handle the 
problem'. 

Equation (1) shows that each component wave is 
formed by the superposition (interference) of all the 
other Bragg waves, taking into account that only the 
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component of D(h,,) parallel to D(hm), denoted by 
suffix [m], is relevant for the resulting amplitude. Their 
electromagnetic coupling due to the interaction with 
the electrons is given by the Fourier component of the 
dielectric susceptibility of the difference r.l.v, h m - h n. 
The resonance term 

K(hm) 2/[K(hm) 2 - k~] (8) 

shows that only those waves have large amplitudes 
whose wave-vector magnitudes K(hr,,) are very close to 
the vacuum value k 0, which means that K(h,,,) terminates 
very close to the Ewald sphere. On the other hand, (8) 
allows the reduction of the infinite systems of equations 
(1) or (2) taking into account only those waves that 
have strong amplitudes (N-beam case). This term also 
shows that diffraction is nothing but a spatial resonance 
phenomenon. This should be kept in mind in order to 
understand the three-beam diffraction profiles, which 
will be discussed in §3.2.2. 

The solutions of the eigenvalue equation (2) give 
the allowed wave vectors K(hm) (eigenvalues) and the 
relative amplitudes D(hm) (eigenvectors). The locus of 
the starting points of all the allowed wave vectors is 
called the 'dispersion surface'. 

Before the outline of the quantitative calculation 
of N-beam diffraction profiles, let us first discuss the 
number of waves when N nodes of the reciprocal lattice 
including the origin are simultaneously very close to 
or lie on the Ewald sphere. It is worth interpreting the 
main properties in terms of ray optics for the two-beam 
case as the simplest example. Each ray is formed out of 
wave packets, which is a bundle of plane waves. The ray 
directions, the directions of the energy flow (Poynting) 
vectors, are normal to the dispersion surface as has been 
shown by Kato (1958) and Ewald (1958). This is the 
golden rule of rays and it is true also for the wave 
packet of the Ewald-Bloch wave field, which consists 
of all the component waves D(hm) whose wave vectors 
K(hm) differ by r.l.v.'s according to (7) (Kato, 1992). 

The dispersion surface in a two-beam case is, roughly 
speaking, given by two dispersion spheres around two 
nodes of the reciprocal lattice, one being the origin 
(Fig. 1). It is the equi-energy surface for the wave 
vectors of the possible waves with fixed frequency that 
start at the surface and terminate at the nodes of the 
reciprocal lattice. At the intersection circle, where the 
eigenvalues of the problem would be degenerate, this 
degeneracy, however, is lifted owing to the interaction of 
the two waves K(0) and K(hm). In fact, each node of the 
reciprocal lattice can be treated equivalently. According 
to (7), the waves K(0) are coupled to the waves K(hm) 
via h m and, v ice  versa ,  the waves K(hm) are coupled 
to the waves K(0) via - h  m. In the sense of Bragg 
reflection at the lattice planes denoted by h m and - h m ,  

respectively, the term 'coupled' means diffracted. This 
again makes the main concept of dynamical diffraction 

evident, namely self-consistency. Near the interaction 
region at the Brillouin-zone boundary, the dispersion 
surface is split into a hyperboloid (non-crossing rule). 
This splitting is not drawn in Fig. 1, since the diameter 
of the hyperboloid is of the order of 10 -5 compared 
with the radius of the dispersion spheres. The difference 
between the magnitudes of the wave vectors in vacuum, 
k 0, and in the crystal, K(hm), which is of the same order, 
is also neglected, as well as the splitting of the dispersion 
spheres for different polarization states. Therefore, only 
one dispersion sphere is drawn for each node. 

The relevant wave vectors for a given diffraction 
geometry are sorted out by the normals of the entrance 
and exit surface of the crystal since the tangential com- 
ponents of the wave vectors must be equal (boundary 
condition) because of the phase matching of the waves 
across the boundary. Thus, the wave vectors differ only 
in their normal components. In the two-beam case, for 
each polarization state there are four intersection points 
of the surface normal with the dispersion surface (Fig. 1) 
assuming a parallel-sided crystal slab. The directions of 
the Poynting vectors of the possible rays are the normals 
of the dispersion surface at the intersection points A, B, 
C, D (tie points according to Ewald). They point radially 
to the corresponding nodes 0 and H,,. Thus, eight rays, 
four for each polarization, are excited inside the crystal 
and two in vacuum at each side of a thin crystal slab 
(Fig. 1). They can be identified as the incident ray S 0, 
the forward-transmitted rays St(0 ) and T(0), the specular 
reflected rays St(0 ) and R(0), the diffracted transmitted 
rays S t ( h  n ) and T(h,,), and finally the diffracted reflected 
rays Sr(h,, ) and R(hn), where the S rays are inside and 
the R and T rays are outside the crystal. It should be 
noticed again that each ray S(hn) consists of a bundle 
of plane waves. 

The wave vectors of the vacuum_p_]ane waves, i__i_~enti- 
cal with the vacuum rays k;(t~) - B0, kr(0 ) ~ DO, on 
one hand, and kt(h,,) = A H  n, kr(h,, ) = C H  n, on the 
other hand, have the same tangential component with 
respect to the crystal surface and they differ by a normal 
component of equal magnitude but opposite direction, 
i.e. their normal components have opposite sign. The 
wave vector of the incident ray is k 0. 

Rth,) 

s,(o) \ / sdo) 

T(O)~ T(h ") 

~ dispersio~ 

surface 

Fig. I. Possible rays in crystal and reciprocal space for a two-beam 
case. 



EDGAR WECKERT AND KURT HOMMER 111 

At this stage of the discussion, it is not necessary to 
distinguish between the Laue transmission and the Bragg 
reflection diffraction geometries. In both cases, all four 
rays are excited. It depends on the diffraction geometry 
which rays carry strong intensity and which are weak. 

The two-beam properties discussed above can imme- 
diately be transferred to an N-beam case. Generally, for 
an N-beam case there are N reflected and N transmitted 
rays for each polarization state [cf. (11)]. 

2.2. Solution of  the fundamental equations 

2.2.1. Eigenvalue problem. In traditional treatments 
of solving the dynamical equations, the 'linearization of 
the eigenvalue equation' is usually applied. Since the 
differences in the magnitudes of the wave vectors in the 
vacuum and in the crystal are of the order of 10 -5 , it can 
be assumed to a sufficient approximation that (Pinsker, 
1978) 

[k o - K(h.,)2]/K(hm) 2 + X(0) ~_ 2[K 0 - K(hm)]/ko, 

(9) 

where 

K,, = , , , [1  + ½ (o)1, ( l O )  

K o is the wave vector in the crystal for the one-beam 
case. 

The linear expression (9) was called excitation error 
(Resonanzfehler) by Ewald. With the application of (9), 
half of the solutions are thrown out of the problem. 
Those rays are concerned that carry negligibly weak 
intensity in ordinary diffraction experiments. The strong 
rays remain, those are the forward-transmitted 0 rays, 
the diffracted transmitted rays of the Laue cases and 
the diffracted reflected rays of the Bragg cases. The 
complete set of solutions have to be taken into account 
in the case of extreme diffraction geometries, such as 
grazing incidence of the incoming ray, grazing exit 
where one or more pairs of reflected and transmitted rays 
are excited parallel to the crystal surface and extreme 
backward diffraction where 20 ~ 180 °. A general 
solution of the plane-wave dynamical theory of N-beam 
X-ray diffraction was developed by Colella (1974). A 

c Sg L ~ _  

g 

Sh 

v 

~h I GO 
S ~ / - 

Fig. 2. Definition of the polarization vectors in a three-beam case. 

short review of Colella 's solution will be given here as 
we also use this general approach for the computational 
analysis of N-beam diffraction profiles. 

The set of vector equations (2) can be decomposed 
into a set of 2N scalar equations since the displacement 
vectors D(hn) are normal to their wave vectors K(h,,). 
Therefore, two orthogonal unit vectors n, and a,, are 
defined (Fig. 2) both normal to the wave propagation 
direction s,, = K(h,,)/IK(h,,)I. 

Then, D(h,,) is expressed as 

D(h,) = D,(h,)~r, + D~(h,)a, .  (11) 

Insertion of (11) and multiplication by ~r,, and a ,  gives 
the following system of scalar equations of rank 2N: 

{ko/K(hm) 2 -  [I - X ( 0 ) ] } D  (hm) 

+ ~ X(hm - h,,)[D~(h,,)rGn m + D~(hn)a,,ltm] 
n#rn 

= 0  (12) 

{k2/K(h,n) 2 - [ 1  - x(O)]}D~,(hm) 

+ ~ X(hm - hn)[D,r(hn)rtntrm + Da(hn)~ntrm] 
n#m 

= 0 .  (13) 

From the system of 2N homogeneous linear equations 
(12) and (13), the eigenvalues, i.e. the unknown wave 
vectors K(hn), and the corresponding eigenvectors, i.e. 
the unknown relative amplitudes D ,  D~ are calculated. 

In a short-hand matrix notation, (12) and (13) can be 
written as 

[.4 +/3]79 = 0. (14) 

79 is a column matrix whose elements consist of N 
pairs D~(h,,), D~,(h,~), n = 1,2 . . . . .  N. n = 1 refers to 
the origin of the reciprocal lattice 0. /3 is a diagonal 
matrix whose 2N elements consist of N equal pairs 
B,, n : k~/K(hn) 2, one for each component of Dp(h,,), 
with p = 7r, or. All the diagonal elements of matrix 
`4 are given by [X(0) - 1]. The elements A~n_t.2, , and 
A2n.2n_ I are zero. All the other non-diagonal elements 
consist of the elements of the sums of (12) and (13) in 
the appropriate order. 

This system has non-trivial solutions if 

det ]`4 + B I = 0. (15) 

From this equation, which is of rank 2N for K(h,,) z, 4N 
eigenvalues are found that give the 4N tie points due to 
the zr and o" polarization components o',, and zr,, of each 
wave. As 13 is a diagonal matrix, (15) can be written as 

det l`4 -1 + B - '  I - -0 .  (16) 

The diagonal elements of B - l  now have the form 
K(h,,)2/k~. 
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Owing to the continuity of the tangential component amplitudes Dp(hn), p -- 7r, or, which form the ray of the 
of the wave vectors across the boundary, they differ by jth tie point. It should be noticed that in a non-coplanar 
components normal to the crystal surface. Therefore, it 
is suitable to choose a Cartesian coordinate system with 
y and z parallel and x normal to the surface. Thus, each 
wave vector can be written as (Schwegle, 1993) 

K(hn) 2 = (k o + h,, + V) 2 

-- v,2 + (2k0x + 2h,~,) v~ + (k~ + h n2 + 2k ° • h,),  

(17) 

N-beam case the 7r and o" polarization components are 
no longer decoupled as in a two-beam case. Thus, 
according to (11 ), for each tie point there are D .  and D ,  
components excited simultaneously. The 4N eigenvalues 
and eigenvectors can now be calculated by standard 
methods for which computer programs are available. 

The various components of the ray are determined 
only on a relative basis. The total displacement vector 
in the crystal is written as 

where v = (v x,0,0), kox and k 0 . h , ,  depend on the 
angle of the incident beam with respect to the crystal 
surface and the lattice planes h,,, respectively. Thus, 
the diffraction geometry at the entrance surface is fixed 
by these two parameters, the vx's are the unknown 
eigenvalues. 

According to (17), 13 -1 can be written as a sum of 
three diagonal matrices. 

B - l  " -  (1/k,~)(v~2" + vxC , +Co), (18) 

where 2" is the identity matrix. 
Then the determinantal equation (16) can be written 

as a second-order matrix polynomial: 

det[vZZ+vxC, + (C0 + A - ' ) ]  = 0. (19) 

It can be shown that the solutions of (19) are the eigen- 
values of a linear determinantal equation (22) (Colella, 
1974) defining for each eigenvector a second one by 

D2v x = 79 l, (20) 

which leads to 

4N N 

Dtot(r ) : ~ qj y]. D/(h,,) exp[-Z~iKj(h, ,) ,  r], (24) 
) n 

where the qj's are 4N unknown coefficients to be deter- 
mined by means of the boundary conditions. 

2.2.2. Boundary conditions. The boundary condi- 
tions for an electromagnetic wave propagating through 
the crystal surface require continuity of the tangential 
components of the electric and magnetic fields E and 
H and for the normal components of the dielectric 
displacement and magnetic induction D and B. The latter 
conditions, however, are not independent of the former, 
so a total of four scalar equations for the two tangential 
components of E and It  have to be satisfied. Within the 
crystal, for each set of plane waves whose wave vectors 
terminate at the node H,, of the reciprocal lattice, there 
are 4N distinct propagation directions given by Kj(h,) 
of (17) with the eigenvalues of (22) where n is fixed and 
j runs over all the 4N tie points. For the waves inside the 
crystal, only the components of the displacement vectors 
Dj(h,,) will be involved in the final equations since the 
components of the electric and magnetic fields will be 
eliminated through the relations 

7 - C  :vx( 2) 
where £ = C o + A - I  

Then the linear determinantal equation is given by 

det [Q - vxZ ] = 0, (22) 

where Q is a 4N × 4N matrix given by 

and (.9 is the null matrix. 
The eigenvalues of (19) and (22) are the same 

(Colella, 1974). For each eigenvalue, an eigenvector 
with 4N components is obtained. As can be seen from 
(20) and (21), the first 2N components ~l  are linearly 
dependent on the second 2N components D 2. Each 
eigenvalue (tie poin t ) j  = 1,2 . . . . .  4N corresponds to 
a set of plane waves Dj(h,,), n = 1,2 . . . . .  N, with 

Ej ( h , , ) - e f ' D j ( h n )  (25) 

The ratio 

Hi(h,,) = ~jTl[Kj(hn) × Dj(h,,)]. (26) 

¢ j , , -  Kj(hn)2/k~ (27) 

is the individual permittivity for each plane wave Dj.(h,,). 
The boundary condition at the entrance and exit 

surfaces of a crystal slab of thickness d can now be 
written as (Schwegle, 1993) 

[Eo6,~,b.° + E(h,,)], = I~j qff j-~Cj,,Dj(h,,) 

i H,,O,,6~ + H(h,,) , -  qjq,,Hj(h,,) 
! 

' ( 2 8 )  

On the left-hand side are the field vectors of the waves 
in vacuum, on the right those of the crystal waves. 
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Suffix t (t -- y, z) stands for their tangential components. 
E 0 and I-I 0 are the given field vectors of the incident 
beam, which have to be taken into account only at the 
entrance surface (b!~) and only for the 0 waves with 
h,, = 0 for n = 1 (b,l,). E(h,,) and H(h , )  are those 
of the reflected diffracted waves at the entrance surface 
and those of the transmitted diffracted waves at the exit 
surface. E(0) and H(0) are those of the specular reflected 
and forward-transmitted waves (see Fig. 1). 

The absolute phases and amplitudes of the waves at 
both surfaces are matched by the factor 

Cj, : exp[-27riKj(h, ,) ,  x], Ixl = d ,  (29) 

which is equal to one at the entrance surface where 
X = 0. 

Since there are two independent scalar equations for 
each of the two tangential components of E and H 
for each r.l.v, h,  on both surfaces, we have a total of 
8N equations with 8N unknowns: the 4N coefficients 
qj of the waves in the crystal and the 4N transverse 
components of the electric field E(h,,) of all the vacuum 
waves. It is, however, possible to eliminate the com- 
pone,;ts of the vacuum waves at each surface by using 
the continuity of the normal component of the Dj(h,,) 
and substituting (26) into (28). Thus, we are left with a 
system of 4N linear complex equations for the unknown 
qj's that determine the crystal waves. 

With the qj's known, it is possible to calculate the 
(x ,y ,z)  components of the amplitudes of the vacuum 
waves using again the continuity conditions of E and D. 

! " l' 

(30) 

[E(h,,)] = qjCj,,Dj(h,) - (,b,,b,. 
.~ 

In the above sections, we discussed the solutions for 
the complete set of reflected and transmitted waves in 
the case of the plane-wave approximation. In ordinary 
diffraction experiments when only the strong Bragg re- 
flected and Laue transmitted rays have to be considered, 
linearization of the eigenvalue equation is allowed. It 
should be noted, however, that both types of wave may 
exist simultaneously - in total N -  1 such rays, where 
the forward-transmitted ray is not included. Within this 
approximation, only 2N tie points (eigenvalues) result, 
i.e. half of the waves are neglected. Consequently, only 
half of the boundary-condition equations are relevant. 
These are the conditions at the exit surface for the waves 
of the Bragg reflected rays and at the entrance surface for 
the waves of the Laue transmitted rays since the Bragg 
and Laue rays in vacuum are formed of the rays Sr(h,~ ) 

and S/(hn), respectively (see Fig. 1) (Htimmer & Billy, 
1982; Weckert & Htimmer, 1990). 

2.2.3. Calculation of  reflectivity and transmissivity. 
By means of the known amplitudes of the vacuum 
waves at the entrance and exit surface, it is possible 
to calculate the reflected and transmitted intensities. In 
the case of asymmetric diffraction geometry, where the 
lattice planes are not parallel or normal to the crystal 
surface, the cross section of the reflected and transmitted 
beams will be changed. In order to satisfy the condition 
of conservation of energy, as the intensity is defined as 
the energy flow density, asymmetry factors 7(h),, have 
to be introduced that take this change into account (von 
Lane, 1960). Accordingly, the reflected or transmitted 
intensity is calculated as 

( ) / '  Ih, ' - - [ l ' ~ ( h , , ) l / % ]  E [E(h) ]  [ (h,,)], EoE 0, 
/4 = A..V. Z 

(32) 

where "/(h,,) are the direction cosines between the vac- 
uum wave vectors k(h,,) and the surface normal, "3,o 
that of the incident beam. In, , represents the intensity of 
the reflected vacuum beams (reflectivity Rh,) in Bragg 
geometry taking the amplitudes at the entrance surface. 
Equivalently, in Lane geometry, In, ' represents the inten- 
sity of the transmitted vacuum beam (transmissivity Th,) 
taking the amplitudes at the exit surface where the Cj,, 
have to be taken from (29). 

3. Phase determination by multiple-beam diffraction 

3.1. Introductory remarks 
The basic idea of how N-beam diffraction can be 

used for physical determination of phase relations orig- 
inates from Lipscomb (1949). He proposed exploiting 
the diffracted intensity when two Bragg reflections are 
simultaneously excited. This situation is called three- 
beam diffraction since, besides the forward-transmitted 
ray, two additional diffracted rays, in total three strong 
rays, are simultaneously propagated (el. Fig. 3). More 

" " ~ ~ / Z " , , ~ I  K(g)\ \g Ih / / 

Fig. 3, Three-beam case: schematical representation in crystal and 
reciprocal space with primary reflection h and secondary reflection 
g; for simplicity, all three K vectors are drawn coplanar. 
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generally, N-beam diffraction occurs when, apart from 
the origin, N -  1 nodes of the reciprocal lattice lie very 
close to or on the Ewald sphere. 

Experimentally, N-beam diffraction can be achieved 
systematically by the azimuthal ~/'-scan technique. In 
this experiment, the crystal is first aligned for a selected 
reflection, called the primary reflection, to generate an 
ordinary two-beam case. Then the crystal is rotated 
about this diffraction vector (r.l.v.), which means ro- 
tated about the normal of the corresponding lattice 
planes, keeping the Bragg angle of the primary reflection 
constant and monitoring its intensity. As the crystal 
is rotated, in general, several nodes of the reciprocal 
lattice simultaneously pass through the Ewald sphere. 
In favourable cases, exactly one additional secondary 
reflection is excited, which leads to a distinct three- 
beam case. Renninger (1937) used the ~-scan technique 
for the investigation of multiple-beam diffraction effects. 
Later, it was extensively used to study extinction effects 
(Aufhellung and Umweganregung) (e.g. Moon & Shull, 
1964) in multiple-beam cases. 

To specify nomenclature, in the following the pri- 
mary reflection is denoted by its r.l.v, h, around which 
the azimuthal ~ scan is carried out. The additional 
secondary reflection is denoted by g, the related three- 
beam case by 0 / h / g  and a four-beam case by 0 / h / g / g ' ,  
correspondingly. 

A rough estimate of the interaction of the excited 
waves in multiple diffraction shows that the intensities 
of the diffracted rays are affected by the relative phases 
of the structure factors involved. We concentrate on 
the three-beam case (Lipscomb, 1949) shown in Fig. 3. 
The incident beam simultaneously excites two diffracted 
waves h and g denoted by their corresponding r.l.v.'s. 
With respect to an arbitrarily chosen origin of the unit 
cell, their phases are given by to(h) and ~o(g). Since the 
difference vector + ( h -  g) has to be also a vector of 
the reciprocal lattice, the g wave is diffracted into the 
direction of the h wave by h - g and vice versa. In the 
K(h) direction, two waves are superimposed, namely the 
primary diffracted wave h and a wave that is diffracted 
at the lattice planes of g and h - g called detour excited 
(Umweg) wave, whose phase is consequently given by 
~(g) + ~ ( h -  g). 

The existence of this Umweg wave was already 
proved in 1937 by Renninger. He observed that 
simultaneously excited reflections drastically enhance 
the intensity of a weak reflection (Umweganregung 
peaks) by monitoring the 'forbidden' 222 reflection 
of diamond as the primary reflection in a ~/'-scan 
experiment. 

Interference of the coherent primary diffracted and 
Umweg waves leads to a resultant intensity that depends 
on their phase difference: 

• 3j: = + [ ~ ( g )  + ~ ( h  - g)  - ~ ( h ) ] ,  ~3+  = - ¢ 3 - -  
(33)  

It is well known that the resulting intensity due to 
the interference of two waves with amplitudes A z and 
A 2 and phases c~ I and ~2 is governed by the cosine of 

+(c~ 2 - c~ l ): 

I - - [Aj  expic~ 1 +A2 expic~212 

=A~ + a ~  + 2A,A2 cos(c~ 2 - o~,). (34) 

It turns out that the phase difference ~3, a so-called 
triplet phase relationship, is independent of an arbitrar- 
ily chosen origin. Therefore, it is a structure-invariant 
quantity. In fact, only structure invariants are measurable 
quantities. Hence, it should be possible to exploit the 
three-beam intensities for the experimental determina- 
tion of triplet phases. 

Now, the distinct advantage of the ~'-scan technique 
is obvious. As the primary reflection remains in its 
reflection position, the two-beam intensity serves as a 
reference level that is modulated when the Umweg wave 
is continuously turned on and off scanning through a 
three-beam position. Thus, the intensity change due to 
the interference contrast of the primary reference beam 
contains information on the triplet phase. 

This experimental technique is very similar to the 
technique used to produce a hologram, where the inten- 
sity of a reference beam is modulated by the scattered 
waves. The interference pattern contains the phase in- 
formation. 

These simple considerations do not explain the ex- 
perimentally observed three-beam diffraction profiles. In 
order to understand the actually observed profiles and 
the underlying diffraction physics, a modified two-beam 
approximation is applied, the so-called first-order Bethe 
approximation, commonly used in electron multibeam 
diffraction. It should be pointed out, however, that it is 
very difficult to use this approximation for a quantitative 
analysis of multiple-diffraction effects, in particular, 
for the quantitative analysis of the various properties 
like phase-independent Aufhellung and Umweganregung 
effects, PendellOsung effects and the effects of different 
polarization states. There are several authors who have 
done a considerable amount of work elaborating the 
analytical solution of multiple-beam diffraction using 
the Bethe approximation (Juretschke, 1982a,b; H~ier & 
Marthinsen, 1983; Chang, 1984). The present authors 
prefer computational simulations. However, simple ver- 
sions of the two-beam approximation are used to obtain 
an insight into the underlying diffraction physics. The 
quantitative computer analysis discussed later is based 
on the plane-wave dynamical theory using boundary 
conditions for parallel-sided crystal slabs. 

Thorkildsen (1987) published the solution of dynam- 
ical three-beam diffraction by means of Takagi-Taupin 
equations for a parallelepiped-shaped crystal. The exten- 
sion of this work could be a way to solve the problem 
for arbitrarily shaped crystals. 
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3.2. Simplified two-beam approximation 
In order to gain a better understanding of multiple 

diffraction profiles and the information they give about 
the multiplet invariant phases involved, it is worth 
discussing their main properties by means of a first-order 
Bethe approximation. 

3.2.1. Three-beam case. To make the discussion as 
simple as possible without losing general physical argu- 
ments, the coupling between the Jr and cr polarization 
components is neglected, i.e. the n .  ¢r scalar products 
in (12) and (13) are set equal to zero, as they are in 
a coplanar three-beam case. Then (12) and (13) are 
reduced to equivalent non-coupled equations for only 
one polarization component (Htimmer & Billy, 1986). 
The effects that may occur by the use of linearly 
polarized synchrotron radiation are discussed in §3.3. 
With the above approximation, using (10), 

R(hm)- '  = {ko/K(hm) 2 - [1  - X(0)]} 

_~ [K o - K(hm)2]/K(h~) 2, (35) 

each equation (12) and (13) can be written in matrix 
notation: 

~0hx(h) R(h) - l  ~ h e x ( h -  g) [ D ( h )  
%,,x(g) o%,x(g - h) R(g ) - '  \ D ( g )  

-- 0. (36) 

The ~nm represent geometrical coupling factors that 
result from the scalar products n,, • 7r,,, or o', • O'm. 

TO solve these equations for the ratio D(h) /D(0) ,  
a perturbational approach, called the Bethe potential 
method (Bethe, 1928) is adopted. The amplitude of D(g) 
may be expressed in terms of D(0) and D(h) using the 
third equation of (36). Upon insertion of this expression 
in the second equation of (36), for instance, and solving 
for D(h) /D(0)  using (4), we get 

D(h)/D(O) -- N-'R(h)[c%hFF(h ) 

+ R(g)~0x~hgF2r(g)r (h  - g)] 

= g - I  e ( h ) F e f f ,  (37)  

2 [ F F ( h -  g)]2R(g)R(h). This where N -- 1 - ~hg 
result should be interpreted as follows. The amplitude 
in the two-beam case, given by D2(h) /D(0 ) = 
N-IR(h)c~ohFF(h), the first term of (37) (i.e. no 
secondary reflections are excited) is modified by higher- 
order terms owing to excitation of other reflections. 
Obviously, if R(h) is negligibly small, i.e. Bragg's law 
for the h reflection is not fulfilled, then no intensity 
can be observed in the direction of K(h).  This is also 
true even though other wave fields are excited. In this 
case, Bragg's law for the scattering of the secondary 
g reflection into the h reflection is not fulfilled since 

the point of the coupling vector h - g does not lie on 
the Ewald sphere. Thus, the basic requirement in order 
to observe the modification of the intensity of the h 
reflection by additional excitation of other reflections 
is to keep h precisely on the Ewald sphere during the 
ko scan. 

Equation (37) confirms in part the basic considera- 
tions by Lipscomb (1949). The resulting amplitude of the 
wave D(h) is given by a superposition of two waves: the 
directly diffracted wave governed by the structure factor 
F(h) and the Umweg wave governed by the product of 
structure factors F(g)F(h  - g). However, the resonance 
term R(g) determines not only the amplitude but also 
the phase of the Umweg wave. It causes a phase shift 
of 180 ° by scanning through a three-beam position. 
This behaviour can be seen by means of the Ewald 
construction, where the radius of the Ewald sphere is 
given by I~1. We assume that the azimuthal scan is 
carried out so that the point of g passes the Ewald sphere 
from inside to outside, in short 'in--out' scan. At the 
beginning when g terminates inside, then IK(g)l < IK01 
since K(g) -- K 0 + g (cf. Fig. 4) and R(g) is positive. 
When the point of g approaches the Ewald sphere, R(g) 
gets larger as the the denominator of R(g) gets smaller, 
i.e. the amplitude of the Umweg wave increases. It has its 
maximum value when the point of g exactly lies on the 
Ewald sphere. When it leaves the Ewald sphere, again 
the magnitude of R(g) and therefore the amplitude of the 
Umweg wave decreases. However, R(g) has changed its 
sign, since IK(g)l > II%1 when g terminates outside 
(of. Fig. 4). Changing its sign, R(g) causes an additional 
phase shift A(~P) by 180 °, which is the resonance phase 
shift. R(g) is a Lorentzian where it is taken into account 
that because of absorption the wave vectors are complex 
quantities. The behaviour of the amplitude and the phase 
shift of the Umweg wave during the ~0 scan is shown 
schematically in Fig. 5. A kinematical approach for the 
explanation of this resonance phase shift is given by 
Woolfson & Fan (1995). 

To specify nomenclature, henceforth, all the ff'-scan 
profiles refer to an ' in-out '  scan: ~ = 0 marks the exact 
geometrical three-beam position, for ~P < 0 the point of 
g is inside, for # > 0 it is outside the Ewald sphere. 

° 

Fig. 4. Schematic drawing illustrating the change of sign of the 
resonance term R(g). 
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A ( ~ )  varies from 0 to 180 ° for an ' in-out '  ~-rotation 
sense. If the rotation sense is reversed (out-in), the 
resonance phase shifts from 180 to 0 °. Therefore, it is 
important to know the rotation sense for the exploitation 
of the triplet phase from the three-beam diffraction 
profiles (Chang, 1982). 

Now, the fundamental features of the integrated in- 
tensity of a q/-scan profile can easily be calculated by 
means of (37). In a first-order approximation, except for 
a range very close to the three-beam position, N may 
be taken as a constant, N ~ 1. The range of validity 
for the first-order solution has been discussed in detail 
by Juretschke (1984), where ~t. in Juretschke's paper 
is equivalent to R(g) - l .  It depends on the magnitudes 
of the structure factors involved. Then, the integrated 
three-beam intensity is approximately given by 

I h (qJ) ~ IFefrl e . ( 38 ) 

We introduce the magnitude IRe(C)[ and the phase A(~)  
of the resonance term, 

R(g ) - - IRg(~) [  exp[iA(ff')], (39) 

and the magnitude and the phase of the structure factors 
involved 

F(h,,) = IF(h,,)lexp[i~(h,,)], h,, = h , g , h - g .  (40) 

From (34) and (37), lh(~  ) is given by 

lh(~) ~ A~ +A~ + 2AzA 2 

x cos([~(g)  + qo(h - g) + A(#)]  - qD(h)}, 

(41) 
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Fig. 5. Schematic drawing of amplitude (magnitude) and phase of the 
Umweg wave close to the three-beam position. 

where 

A I -- %hFIF(h) l  
(42) 

A2 = -,,e%r21R ( )llF(g)llF(h - g)l. 

Hence, the interference of the primary wave and the 
Umweg wave is governed by the total phase ~tot(~//), 
which according to (33) and (41) is given by 

Otot(~/~) --  -~-[~3+ + z~(~/ ) ] - - -  T [O3  - -- z~(~//)]. ( 4 3 )  

It should be noticed that the resonance phase shift 
was not considered by Lipscomb (1949). It is a result of 
the self-consistent dynamical interaction. In fact, such a 
phase shift occurs also in two-beam diffraction rocking 
the crystal through a two-beam diffraction position. 
Ewald (1917, 1965) in his work on crystal optics of 
X-rays has previously pointed out that Bragg diffraction 
is a spatial resonance phenomenon. The resonance term 
may be regarded as the efficiency of the crystal to 
convert a given amplitude of polarization P into the field 
amplitude D. If Bragg's diffraction condition is fulfilled, 
i.e. K(h) 2 "~ K~, this efficiency will be optimum. 
Thus, the diffraction will be optimum when the spatial 
periodicity of the incoming wave matches the spatial 
periodicity of the lattice. At this stage of the discussion, 
it should be stressed once again that the three-beam 
intensity depends not only on the cosine of the triplet 
phase but also on the cosine of the total phase ~btot(~t~), 
which contains the resonance phase shift A(#) .  Owing 
to this fact, the three-beam intensity depends also on the 
sign of 1431 with 0 < 1431 < 180 °. 

3.2.2. Three-beam interference profiles. In the pre- 
vious section, we have already considered the three- 
beam interference between the directly diffracted wave 
and the Umweg wave and their phase difference. Let us 
now find the principal features of three-beam profiles 
for different triplet phases using the azimuthal ¢-scari 
technique. 

Suppose the triplet phase of a three-beam case 0 / h / g  
is zero: 'P3+ -- 0°. Then, at the beginning of the 
scan, A(~') = 0 and ~/~tot(~ ~') "-- 0. The amplitude of the 
Umweg wave is very small and the two-beam intensity 
~2) is observed. With a scan towards the three-beam 
position, the amplitude of the Umweg wave increases. 
The primary wave and the Umweg wave interfere in a 
constructive way that leads to an increase in the resultant 
amplitude of D(h). Thus, the intensity is increased. Very 
near to the three-beam position, A ( ¢ )  shifts very rapidly 
from 0 to 180 °, then ~/~itot(~ ) --  180  °. This means that 
the interference becomes destructive and the two-beam 
intensity is decreased. At the end of the ~ scan when 
the amplitude of the Umweg wave gets smaller, the two- 
beam intensity is observed again. A calculated profile of 
this type is shown in Fig. 6(a). It reflects the fact that 
cos[~tot(~)] changes its sign as ~tot(~) varies from 0 to 
180 °. In the case that ~/i3+ = 180 °, the ~F-scan profile 



EDGAR WECKERT AND KURT HOMMER 117 

will be reversed with respect to ~ = 0, as `#tot(~) varies 
from 180 to 360 ° and thus C O S [ ~ t o t ( k 0 ) ]  changes from 
negative to positive values. 

For `#3+ = +90 or - 9 0  °, it is important to notice 
that different ~P-scan profiles result. Therefore, it is 
possible to distinguish the two cases experimentally. For 
~/'3+ = +90°,  C O S [ ` # t o t ( k 0 ) ]  i s  always negative scanning 
through a three-beam position; for ~/'3+ = -90° ,  it is 
always positive. This means that the interference term, 
the third term of (41), is symmetric around the three- 
beam position ko = 0. Therefore, a symmetric decrease 
or increase of the two-beam intensity is expected owing 
to destructive or constructive interference, respectively. 

Of course, if we had taken the negative sign in 
(43), we would have obtained the same type Of profile. 
This is also true if we had taken the negative sign for 
the definition of the triplet phase in (33), i.e. - `#3-  
instead of `#3+- Both definitions lead to the same type 
of profile. Hence, there is no ambiguity with respect to 
the experimental phase determination from the O-scan 
profiles, since one gets either `#3+ or - ~ 3 - -  

It remains to discuss the diffraction profiles if `#3+ 
equals +45 or +135 ° . Their principal features must 
be something intermediate between 0 and +90 or +90 
and 180 °, as can be .seen from Figs. 6(b) and (d). 
For instance, if `#3+ = +45°,  then at first a smaller 
region of constructive interference is observed, as long 
as cos[45 ° +Zl(#)]  is positive. Since the amplitude of the 
Umweg waves reaches its maximum for ~ t o t ( ~ )  z 45 -+- 
90 = 135 °, in that case, a larger region of destructive 
interference is to be expected and the increase of the 
two-beam intensity is weaker than the decrease. 

A summary outline of (integrated) three-beam profiles 
is given in Fig. 6. Because of its experimental relevance, 
profiles of triplet phases having opposite sign are com- 
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pared. In the following, we use '#3+ as a definition for the 
triplet phase [cf. (33)] and use the short-hand notation 

`#3- 
3.2.3. Four-beam case. The feasibility of experi- 

mental determination of multiplet phase invariants by 
means of four-beam ~-scan experiments was investi- 
gated both theoretically and experimentally (Post, Gong, 
Kern & Ladell, 1986; Chang et al., 1988; Hiimmer, 
Bondza & Weckert, 1991). There are two types of 
four-beam case: systematic ones if the ~P-rotation axis 
coincides with a symmetry direction of the reciprocal 
lattice and accidental ones for special wavelengths if two 
arbitrary three-beam cases occur at the same ~P position. 
The modified two-beam solution (44) shows that the 
~-scan profiles depend on two first-order triplet phase 
terms and two second-order quartet phase terms and a 
second-order phase-independent extinction term. Analo- 
gous to the three-beam case, the crystal is rotated about 
h. The two additional secondary reflections are denoted 
by g and g~. The two-beam approximation calculated 
analogously to the case of three-beam diffraction gives 

D(h) /D(O)  = N -I R(h)F[F(h)  

+ l~R(g)(~o eog,eF(g)F(h - g) 

+ FR(g ' )%.e ,%e ,F(g ' )F(h  - g') 

+ F2R(g)R(g')(~I),~ ,(~,,~,'~hx' 

× F(g)F(g t - g)F(h - g') 

+ F2R(g)R(g~)~o~,,<~x,~U,x 

× F(g ' )F(g  - g ' )F(h  - g) 

- F2R(g)R(g')~,,ho~.~,, 

× F(h)F2(g - g')], (44) 

where N - l  is equal to one plus higher-order phase- 
independent terms in F". The magnitude of the terms 
in (44) is governed by the power n of 17 (17 _~ 10-7). 

The first-order triplet terms represent Umweg waves 
generated by twofold reflection at the lattice plane of g 
and h - g or gt and h - gt, respectively, which are super- 
imposed on the primary diffracted wave. Consequently, 
two triplet phase invariants are involved: 

`#3 = - ~(h)  + ~(g) + ~(h  - g) 

~ = - ~(h) + ~(g')  + ~(h  - g'). 
(45) 

The second-order quartet terms represent Umweg 
waves generated by threefold reflection at the lattice 
planes of g, g ~ - g ,  h -  g' and g', g -  g~, h -  g, 
which are superimposed on the primary diffracted wave. 
Accordingly, in addition two quartet phase invariants 
are involved: 

'P4 = - ~ ( h )  + ~ ( g )  + ~ ( g '  - g)  + ~ ( h  - g ' )  

`#~ : - , ( h )  + ~ ( g ' )  + , ( g  - g ' )  + ¢ ( h  - g) .  
(46) 
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The fifth term is a phase-independent second-order 
extinction term, which can be interpreted analogously 
to the primary extinction in a two-beam case. It leads 
to a phase-independent modification of the two-beam 
intensity. It should be noticed that only those structure- 
factor multiplets that contain F(h) are relevant for the 
modulation of the primary reflection scanning if' about h. 

Systematic four-beam cases occur if h coincides with 
a symmetry direction of the reciprocal lattice. The sym- 
metry of the reciprocal lattice (holohedry) of each crystal 
family ensures that each lattice symmetry direction car- 
ries symmetry operation 2/m, except for the [111] 
direction in the rhombohedral and cubic crystal system. 
If, simultaneously, h coincides with a twofold axis of 
the crystal structure, then special relations exist between 
the two triplet phases 4 3 and 4~, and between the two 
quartet phases 44 and 4~. 

As can be seen from Fig. 7, where the reciprocal- 
lattice vectors involved in 43 and 4 '  3 are drawn with 
respect to their common origin, g and g' are symmet- 
rically related to h - g' and h - g, respectively. If h 
coincides with a twofold symmetry axis or a twofold 
screw axis 21 of the structure, then ~(g) = ~ ( h -  g') 
and ~(g ')  = ~ ( h -  g) and, therefore, 43 = 4~. This 
condition can only be fulfilled in space groups with 
rotations, roto-inversions and corresponding screw axis 
2, 4, 4, 6. It is not possible in space groups containing 
only operations ] ,  m, 3, 6, 3 l, 32 and glide planes 
(Hiimmer, Bondza & Weckert, 1991). 

If the ~ scan is carried out about the opposite parallel 
side of the trapezoid, namely around (g' - g), taking the 
(g' - g) reflection as a primary one (cf. Fig. 7), then the 
relevant triplet phase relationships are given by 

~ 3  = -- ~ ( g t  _ g)  _jr_ ~ ( h  - g )  -Jr- ~ ( g t  _ h )  

3 = ~(gt g) + qo(-g) + ~(g') .  
(47) 

By means of two ~0-scan experiments about the parallel 
sides of the trapezoid, provided that h, and g~ - g, 
coincide with a twofold axis 2 or screw axis 21 of 

T 

h h-g 

h - g '  

g' 

h 

Fig. 7. Reciprocal-lattice vectors for a systematic four-beam case 
drawn with respect to a common origin (left) and their mutual 
orientation in a four-beam O-scan diffraction experiment (right). 

the structure, the quartet phases can be calculated by 
the measured triplet phases 43 and #3- They are given 
by 4 4 = ~ 3  - ~ 3 ;  ~ 4  = ~ t  3 n c 4 3 "  

In the event that the O-rotation axis coincides with 
the non-parallel sides of the trapezoid or with one of its 
diagonals, no such relations between the invariant phases 
can be found. Moreover, with one of the diagonals taken 
as the O-rotation axis, the two other reciprocal-lattice 
points pass through the Ewald sphere with different 
rotation sense, i.e. one is at an in-out position the other 
at an out-in position (Post, Gong, Kern & Ladell, 1986). 
Such O-scan experiments would give rise to complicated 
profiles and consequently the extraction of phases would 
become very difficult. 

Detailed computational analysis and experimental in- 
vestigations (Htimmer, Bondza & Weckert, 1991) have 
shown that the four-beam diffraction profiles are domi- 
nated by the triplet phases as the two-beam modulation 
due to the quartet phase terms is of the order of F 
weaker than that due to the triplet phase terms [cf. (44)]. 
For accidental four-beam cases, which may happen for 
selected wavelengths, the two triplet phases involved 
generally have different values. Then, the O-scan profiles 
are essentially a superposition of two three-beam profiles 
of different triplet phases. In that case, it is generally 
impossible to determine the unknown triplets experi- 
mentally. However, it is expected that the interference 
effects in systematic symmetrical four-beam cases with 
two equal triplet phases are enhanced. In that way, 
experimental phase determination may be easier, as 
shown by Huang, Wang & Chang (1994). 

3.3. Polarization effects 
For simplicity in §3.2, the coupling between the 7r 

and cr polarization components were neglected. Now the 
Bethe approach is applied to (12) and (13) without these 
restrictions. The polarization vectors n,, and 05, can be 
arbitrarily aligned. It is convenient, however, to regard 
all nn components lying in the plane of the incident 
beam and the primary diffracted beam shown in Fig. 2 
for a three-beam case. 

The polarization state of the incident ray is repre- 
sented by 

E 0 = E0(n 0 + ibao), (48) 

where b is the ellipticity parameter ( - 1  < b < +1); 
b -- + 1 represents right and left circular polarization, 
b = 0 linear polarization. Then, the result can be 
best represented by means of the flow diagram of Fig. 
8 (Schwegle, 1993) for the geometrical arrangement 
shown in Fig. 2. On the left-hand side, there are the input 
components of the incident beam, on the right, the output 
components of the diffracted beam of the reference two- 
beam case 0/h.  In terms of two-beam approximation, the 
couplings between the input and output are decomposed 
into the directly diffracted waves D and the various 
Umweg waves U. According to the definitions of the'  
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Table 1. Overview o f  possible combinations o f  signs o f  the Umweg waves 

Case ~roTt h noTrg%n h no%agnh 

1 + + + 
2 + - + 
3 + + - 
4 - -  - -  - 

5 - - + 
6 - + - 

No anomalous asymmetry 
Anomalous asymmetry possible 
Anomalous asymmetry possible 
No anomalous asymmetry 
Anomalous asymmetry possible 
Anomalous asymmetry possible 

polarization components of Fig. 2, the directly diffracted 
wave 0 /h  allows the coupling via the scalar products 
Tt0-Tt h and ao. tr  h (where the latter is trivially equal 
to 1). The components of the Umweg wave, which as 
has been shown depends on the products of the structure 
factors F(g)F(h - g), are represented by a twofold scalar 
product. Each coupling of the polarization components 
of the 0 beam into those of the h beam via the 7r 
and tr components of the g beam with nonzero scalar 
products have to be taken into account. Thus, there are 
five coupling channels open. For instance, part of the 
power of the 7t 0 component may be diffracted into the 
ag component, which in its turn may be diffracted into 
the tr h component. It should be noticed that there is 
no coupling between the a 0 and the 7tg component as 
they are perpendicular to each other. Therefore, there 
are three 7r and two o- channels open for the coupling 
between the incident beam and the h reflection via the 
Umweg wave. 

Dependent on the diffraction geometry, some scalar 
products may become negative. In terms of three-beam 
interference, this has to be interpreted as an additional 
180 ° phase shift, which may significantly influence the 
phase indication of the #-scan profiles as anomalous 
asymmetry effects occur (Juretschke, 1986; Schwegle, 
1989). 

Let us discuss this effect under relevant experimen- 
tal three-beam conditions when linearly polarized syn- 
chrotron radiation is used, with its electric field vector 

F(h) F(g)F(h - g) 

I , 

o.  I " 

Fig. 8. Schematic flow diagram showing the contributions of  differ- 
ent polarization states in the two-beam approximation (Schwegle, 
1993). 

either in the plane or perpendicular to the reflection plane 
(S0, Sh) of the reference two-beam case. In the latter 
case, the incoming beam is regarded as o polarized. 
The input component D .  (0) is zero. Nevertheless, there 
exists a non-zero output D,~(h) because of the Umweg 
component U,,.. However, the latter has no relevance for 
three-beam interference as there exists no D,~ component 
of the primary diffracted wave. Then, there remains the 
interference between D o and U ~  where its twofold 
scalar product trOtrgtrg,r h is always positive since o" 0 
is parallel to o h . Therefore, in the a-polarized mode, no 
anomalous asymmetries occur. 

For the in-plane case, the input D~(0) is null. Then, 
the interference between D .  and U~,~ and U~. has to be 
considered. Usually, the Bragg angle O h of the primary 
reflection is smaller than 45 ° . Then, the scalar product of 
the primary reflection ~t07t h is always positive. However, 
the two U~. components may become negative. This 
depends on where the end of g passes through the Ewald 
sphere. Such a case is shown in the stereographic projec- 
tion of Fig. 9. If the end of g passes through the Ewald 
sphere in the grey region of the stereographic projection, 
i.e. 7tg lies between 7t o and gh, then the twofold scalar 
product rtoTtgrtg~t h of the U~'~ component is positive 
whereas rtotrgtrg~t h of U~,~ is negative. However, the 
signs of both Umweg components are inverted if the 
end of g passes through the Ewald sphere in the dark 
region of Fig. 9. 

Generally, for the 7r-polarized mode, the sign com- 
binations given in Table 1 are possible. If the two 
Umweg components have different signs and if they are 

~ h 

Fig. 9. Stereographic projections of  the Ewald sphere onto the primary 
two-beam diffraction plane. The shadowed regions indicate posi- 
tions for the end of g where anomalous asymmetries may occur. 
Left: 0 < 45 ° , 7rolr h > 0; right: 0 > 45 ° , n01t h < 0. The 
light-grey regions co;respond to cases 3 and 5 of Table 1 and the 
dark-grey regions to cases 2 (as indicated in the left figure) and 6. 
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comparably strong, then anomalous asymmetries due to 
the additional geometrically induced phase shift by 180 ° 
appear, which may lead to wrong phase indications. 
Since the diffraction geometry is known, those critical 
cases can be avoided from the beginning. It should be 
noticed that in the case of macromolecular structures 
with large dimensions of the unit cell the Bragg angles 
are relatively small. Then, the U ~  component is always 
weak since 7[00" h as well a s  agTg h are nearly equal to 
zero and as a consequence no anomalous asymmetries 
occur. However, these effects may occur with small- 
molecule structures. On the other hand, the dependence 
of the three-beam interference on the polarization can 
be exploited to detect the polarization state (ellipticity) 
of the incident beam (Shen & Finkelstein, 1990, 1992; 
Schwegle, 1993). 

4. Computational analysis of three-beam diffraction 

4.1. Dispersion surface 
The dispersion surface is the locus of the tie points 

where the wave vectors of all the possible waves are 
attached that may propagate in the crystal with a given 
frequency. They are calculated from the linear determi- 
nantal equation (22), which is a conditional equation 
for the fundamental equations to provide non-trivial 
solutions. The tie points that are actually excited are 
given by the experimental parameters that define the 
diffraction geometry. 

In a three-beam case, the dispersion surface consists 
of six sheets owing to the ~r and tr components for 
each of the 0, h and g waves whose wave vectors 
terminate at the corresponding reciprocal-lattice points 
0, H and G. As the three-dimensional dispersion surface 
for a non-coplanar three-beam case is very difficult to 
survey, it is appropriate to discuss intersections adapted 
to the azimuthal ~P-scan technique where the diffraction 
condition for the two-beam case 0/h, for instance, is al- 
ways satisfied. An intersection of the dispersion surface 
with the plane of incidence for the two-beam case 0 /h  
is shown in Fig. 10(a). Near the intersection (Lorentz 
point Lo 2) of the dispersion spheres around 0 and H, 
represented by the asymptotes T 0 and T h, which are the 
traces of their dispersion spheres, the dispersion surface 
splits into two hyperbolical branches, one for each 
and o- polarization. In the two-beam case, the dispersion 
surface consists of surfaces of revolution around the 
diffraction vector h. Rocking the crystal about h by small 
angles ~ makes the actual tie points move approximately 
perpendicular to the plane of drawing. Therefore, it 
is convenient to depict the ~/'-scan dispersion surface 
in an intersection plane perpendicular to the primary 
diffraction vector h. Such an intersection AA is shown 
in Fig. 10(b). The three parallel dashed lines are the 
intersection lines with the diameter points of the two- 
beam a hyperbola and the trace of the two-beam Lorentz 
p o i n t  L o  2. The other straight dashed line is the trace T 

of the third dispersion sphere around G. At the three- 
beam setting (~/' = 0), the three dispersion spheres T 0, T h 
and T~, intersect at the three-beam Lorentz point L o  3. 

Because of the three-beam interaction, the two-beam 
dispersion surface splits again at the crossing points with 
T .  Hence, T~ is the asymptote of the g-like parts of 
the dispersion surface away from the three-beam setting 
where the Poynting vector essentially points to G. The 
splitting of the dispersion surface owing to the n and o" 
components is clearly visible. 

Fig. 11 shows intersections AA of the three-beam 
dispersion surface for three triplet phases, namely for 
q~3 = 0, +90 and 180 ° . It can be seen that the dis- 
persion surface near the three-beam Lorentz point Lo 3 
is different for different triplet phases. It is asymmetric 

(a) 

',~ ~ ~',/ 

l/ + +  

(b) 

Fig. I0. (a) Intersection of the dispersion surface with the diffraction 
plane in a two-beam case. (b) Intersection of the three-beam 
dispersion surface with the plane A-A of (a) for a O scan around h. 

I ~'<0 
0 ~ III I~80 UII 

I I +>° 

Fig. I. Same as in Fig. IO(b) for different triplet phases of (1, -t-90 
and 180 °. 



In the following figures, the integrated intensity 
int 1 n (O) is normalized with respect to the unperturbed 

integrated two-beam intensity I~ 2) of the primary 
reflection. 

for 4~ 3 equal to 0 and 180 ° and it is symmetric with 
respect to  L o  3 for ~3 equal to +90 °. This means that 
the dispersion surface depends on cos(4~3) since the 
eigenvalues are identical for 4~ 3 equal to +90 and - 9 0  °. 
This behaviour has already been proved by Ewald & 
Heno (1968). The eigenvectors, however, and thus the 
three-beam intensity depend also on the sign of ~3 where 
we define its magnitude in the range 0 < 1(I:'31 < 1 8 0  ° .  

This fact has already been discussed by means of the 
two-beam approximation and it will be discussed later 
on in more detail. 

The asymmetrical dispersion surface leads to asym- 
metrical O-scan profiles, whereas for ~ 3  = +90° sym- 
metrical profiles are expected. Thinking in terms of 
the effective structure factor Fef f in the framework of 
the two-beam approximation, the splitting of the two- 
beam dispersion surface is supposed to be proportional 
to Fen.. Hence, the intensity is increased if the width 
of the splitting at the crossing close to Lo 3 is large 
and vice versa. This can be seen in Fig. 11 where for 
4' 3 = 0 ° the splitting at ~/' < 0 is larger than that at 
O > 0. In that case, for an in-out O-scan experiment, the 
integrated intensity is first increased and then decreased. 
Consequently, the inverse asymmetry appears for q53 = 
180 ° and no asymmetry appears for '/'3 = +90°- 

4.2. Integrated three-beam O-scan profiles 
In the framework of plane-wave dynamical theory, i.e. 

taking ideally monochromatic and ideally non-divergent 
collimated beams, the N-beam O-scan profiles are cal- 
culated from the reflectivity or transmissivity of the 
primary diffracted ray using (32) as a function of two 
angular variables O and ~. The a;-rotation axis is perpen- 
dicular to the O-rotation axis (cf. Figs. 3 and 10). Hence, 
away from the N-beam setting (1¢'1 > 0), an w scan 
generates an unperturbed two-beam rocking curve of the 
primary reflection (cf for instance Fig. 12). 

In order to take into account experimental parameters 
like divergence, spectral bandwidth and mosaicity, the 
plane-wave dynamical profiles have to be convoluted 
with a broadening function, for instance with a suitable 
Gaussian G. 

-k-cx~ -t- :x~ 

/~h°"(~,O) = constant f dv j" d u l n ( ~ - v , O - u )  
- - O C :  - - O ( D  

x G(v,u). (49) 

It turns out that the divergence together with dispersion 
effects due to the limited bandwidth usually exceed the 

width of the dynamical profiles. In these cases, the 
convolution in the ~ direction may be replaced by an 
integration over w. Then, the integrated O-scan intensity 
is given by 

+~,~ -t- :xD 
l~"t(O) = constant j" dw f dulh(~ ,O -- u)G(u). 

- - O O  - - ( X 2  

(50) 

lrel  lint(O)/l~2). . ( ~ ' ) = - h  (51) 

1.0 

Therefore, these diagrams show the relative change of 
the two-beam intensity owing to simultaneous excitation 
of other beams. 

4.3. Reflection and transmission geometries 
We are now going to consider different three-beam 

diffraction geometries. If the crystal is supposed to be a 
parallel-sided slab, four distinct situations may occur. 
First of all, the diffraction geometry of the primary 
reflection has to be considered. It can be a Bragg 
diffraction case or a Laue transmission case. Since 
the two-beam intensities in both cases show different 
behaviour, the question arises whether there are basic 
differences with respect to the evaluation of triplet 
phases from three-beam diffraction profiles. In particular 
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Fig. 12. (a) Three -beam rctlcctivity. 'b3 ---- 0 ° (axis units in arcscc- 
onds), diffraction geometry:  Bragg -Bragg ;  three-beam case: h = 
311, g = 220, GaAs:  F(0)  = 242.9, IF(h)l = 110.6, IF(g)l = 
170.2, ]F(h  - g)l = 143.5, A = 1.35 ,~, surface normal:  n = 311; 
plate thickness: 1 mm:  incident beam: 7r polarized. (b) Contour  plot 
o f  (a). 
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in the Laue case, the influence of PendellOsung effects 
has to be considered. In this case, the intensity of 
the primary reference beam depends critically on the 
thickness of the crystal and it is expected that additional 
effects occur. 

Moreover, the secondary reflection can be either a 
Bragg or a Laue case. However, it will turn out that the 
diffraction geometry of the secondary reflection is not 
a crucial point. Therefore, the diffraction geometry is 
denoted by that of the primary reflection, e.g. Bragg or 
Laue case; if necessary, the type of diffraction geometry 
of the secondary reflection is appended. 

An additional parameter in our analysis for different 
diffraction geometries is the thickness of the crystal. 
To have a short-hand notation, we speak of a thin or 
thick crystal if the thickness is smaller or larger than the 
PendellOsung distance, respectively. If necessary, more 
precise denotations are used. 

4.3.1. Bragg case. A calculated three-beam diffrac- 
tion profile In(w, ~P) with the primary reflection in Bragg 
geometry in the case of a thick crystal is shown in 
Fig. 12(a). The triplet phase involved is 0 °. Further 
parameters are given in the caption. Near the three-beam 
setting, ~V _~ 0, the two-beam profile is modified owing 
to the excitation of a secondary reflection. The excitation 
of K(h) waves along the g-like part of the dispersion 
surface can clearly be seen, particularly in the contour 
plot (Fig. 12b). As can further be seen in Fig. 12(a), 
the two-beam profile lh(w, [kO[ -- constant > 0) far from 
the three-beam setting shows the typical properties of a 
Bragg-case rocking curve. The reflectivity is about 90% 
in the total-reflection domain since absorption is taken 
into account. Because of refraction at the entry surface, 
the maximum of the rocking curve is shifted away from 
the geometrical Bragg angle (w = 0) calculated from 
the vacuum wavelength. The relative integrated three- 
beam reflectivity is shown in Fig. 13. It shows the 
typical asymmetry of a q'-scan profile for ~b 3 - 0 °, 
as already discussed in §3.2. These features are not 
immediately obvious in Fig. 12 since the increase of 
the integrated reflectivity is due to a broadening of the 
two-beam profile near the three-beam setting, where for 
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Fig. 13. Integrated three-beam ~/'-scan profile of Fig. 12 convoluted 
with a Gaussian with ~r = 11". 

< 0 the effective structure factor Fef f is increased 
because of the constructive three-beam interference. 
In the Bragg case for thick crystals, the maximum 
height of the two-beam rocking curve (cf. Fig. 12a) 
is not increased since it is essentially governed by 
total reflection. The increase of the integrated reflected 
power due to constructive interference is only possible 
by broadening the total-reflection range. Contrarily, in 
the destructive interference range, for ~ > 0, the 
total reflection width is decreased. These features are 
immediately obvious in the contour plot of Fig. 12(b). 

For a thin crystal in Bragg reflection geometry, there 
exists no total reflection even in the absence of ab- 
sorption. Fig. 14 shows the three-beam reflectivity of 
a 180 ° triplet phase where the thickness of the plate was 
chosen to achieve a maximum reflectivity of the two- 
beam case of about 30%. In this case, the reflectivity in 
the constructive interfering part at ~V < 0 is higher and 
in the destructive part at ~' > 0 lower compared with 
the undisturbed two-beam reflectivity. In addition to this 
change of the maximum reflectivity like in the ' thick'- 
crystal Bragg case, the width of the reflection profile 
is increased in the constructive and decreased in the 
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Fig. 14. (a) Three-beam reflectivity, ~'3 = 180 ° (axis units in 
arcseconds), diffraction geometry: Bragg-Bragg; three-beam case: 
h = 040, g = 042; metric: orthorhombic, a = 5.582, b = 9.812, c = 
11.796/~,; F(0) = 321, ]F(h)l = 15.5, IF(g)l = 20, IF(h-  g)J = 
34; A = 1.5405/~,; surface normal: n = 040; plate thickness: 
0.02 mm; incident beam: a polarized. (b) Contour plot of (a). 
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destructive region, respectively. In Fig. 15, the integrated 
three-beam ~-scan profile of Fig. 14 is shown. It shows 
clearly the interference profile of a 180 ° triplet phase. 
It should be stressed at this point that an integration in 
the w direction is not necessary in the case of a thin 
crystal as the interference effect is present for each ,; 
close to the maximum of the two-beam rocking curve. 
This is not the case for a 'thick' crystal with the primary 
reflection in Bragg geometry. 

Figs. 16 and 17 demonstrate that three-beam profiles 
for ~3 equal to +90 and - 9 0  ° also depend on the 
sign of the triplet phase. These numerical results clearly 
confirm the considerations in §3.2. The profiles are sym- 
metrical in both cases. However, the respective relative 
change of intensity is different owing to constructive and 
destructive interference effects. 

To summarize the results of this section, it should 
be noticed that if the primary reflection is in Bragg 
geometry then there is no distinct difference between 
the thick- and thin-crystal cases with respect to the in- 
tegrated three-beam intensity, which is usually observed 
in a real experiment. The important differences for ~/'3 
equal to +90 or - 9 0  ° can be used for the experimental 
determination of the absolute structure (cf. §6.1). 

4.3.2. Laue case. The essential difference compared 
with the Bragg case is that PendellOsung effects occur 
in the Laue case for thick crystals which seriously 
affect phase determination by N-beam diffraction. It is 
well known from the two-beam case that these effects 
are due to the interference of the waves that belong 
to tie points at different branches of the dispersion 
hyperbola. The diffracted power at the exit surface 
oscillates between the two transmitted waves T(0) and 
T(h) (cf. Fig. 1) depending on the crystal thickness. 
This occurs as the phase difference between the 0 
waves of different tie points on the one hand and that 
of the h waves of different tie points on the other 
hand changes continuously with the penetration depth 
t. The interference term that causes the PendellOsung 
oscillations is given by 2DID 2 cos[27rA-Jt], where the 
D's  are the amplitudes of the waves from different 
branches of the dispersion hyperbola and A is the 

PendellOsung distance (Authier, 1993). In the three- 
beam Laue-Laue case, i.e. the primary h reflection as 
well as the secondary g reflection are in transmission 
geometry, the transmitted power oscillates between three 
transmitted rays. In a Laue-Bragg case, the situation is 
comparable to that of a two-beam Laue case. In any 
case, there are additional phase effects that, so far, have 
not been taken into account (cf. §3.2), which, however, 
may drastically influence the phase indication of the 
three-beam profiles. Therefore, we focus at first on the 
thin-crystal case where the thickness is well below the 
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Fig. 16. Three -beam reflectivity. (a) ~/'3 = - 9 0 ° ,  (b) ~3 = 90 ° (axis 
units in arcseconds),  diffraction geometry:  B ragg -Bragg ,  three- 
beam case: h = 040, g --  042; metric: or thorhombic ,  a = 5.582, 
b = 9.812, c = 11.796 ,~; F(0)  = 321, IF(h)l  = 15, IF(g)l = 20, 
I F ( h -  g)l = 25, A = 1.5405 ~ ;  .~,,~face normal:  n = 040; plate 
thickness: 0.02 mm;  incident beam: o pc~arized. 
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Fig. 15. Integrated th ree-beam ~ - s c a n  profile o f  Fig. 14, convoluted 
with a Gauss ian  with tr = 11". 
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Fig. 17. Integrated O-scan  profiles for triplet phases - -90  ° (solid) 
and + 9 0  ° (dashed) of  Fig. 16 convoluted  with a Gauss ian  with 
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first Pendell6sung period of  the primary h reflection, i.e. 
A - I  is given by the distance of  the diameter points of  
the two-beam hyperbola. Afterwards,  the thick-crystal 
case will be discussed. 

Fig. 18 shows the calculated three-beam transmissiv- 
ity of  a Lane case for ~3 = 180°- The constructive 
interference effect in the range ~ > 0 as well as the 
destructive interference for ~P < 0 close to three-beam 
setting is clearly be seen. Figs. 19 and 20, for q~3 equal 
to + 9 0  and - 9 0  °, demonstrate that also in the Laue 
case the three-beam intensity depends on the sign of  
the triplet phase. For + 9 0  ° , the maximum height of  
the three-beam intensity is decreased; it is increased for 
- 9 0  °. A comparison of Figs. 19 and 16 reveals similar 
features of  the corresponding profiles in Bragg and Laue 
geometry. The oscillations obvious in Figs. 19 and 16 are 
due to the small thickness chosen for the calculations. 
They correspond to PendellSsung fringes of  constant 
inclination. 

A summary outline of integrated three-beam ~P-scan 
profiles for different triplet phases that are relevant in a 
real experiment is given in Fig. 6. The respective profiles 
of triplet phases with opposite sign are compared.  This 
comparison is also of  experimental relevance since, as 
will be understood later (cf. §4.4), we always measure 
the pair of  three-beam cases 0 / h / g  and 0 / - h / - g .  
They have opposite signs of triplet phase, although the 
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Fig. 18. (a) Three-bean/ transmissivity, '/'3 = 180 ° (axis units in 
arcseconds). Diffraction geometry: Laue-Laue; three-beam case: 
h = 040, g = 042; metric: orthorhombic, a = 5.582, b = 9.812, 
c =  I I.796,~; F(O) = 3 2 1 ,  IF(h) l  = 15.5, IF(g)I = 20, 
l F ( h  - g)[ = 30, A = 1.5405 A, plate thickness: 0.05 mm, incident 
beam: a polarized. (b) Integrated tP-scan profile of (a) convoluted 
with a Gaussian with a = I I ' .  

magnitudes of  the involved structure factors are the same 
if anomalous scattering can be neglected. 

In the thin-crystal case, the three-beam profiles show 
no essential difference between the Laue and Bragg 
geometry (cf. Figs. 16, 19). However ,  for thick crystals 
in the Laue case, Pendell6sung effects come into play. 
This can be seen in Fig. 21, where the interference 
effects for 'P3 equal to + 9 0  and - 9 0  ° are inverted owing 
to the Pendell6sung interference at this thickness. 

The integrated three-beam transmissivity at the three- 
beam position ~ = 0 for triplet phases ~3 = +90°  
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Fig. 19. Three-beam transmissivity. (a) 4'3 = -90 °, (b) ~3 = 90 ° 
(axis units in arcseconds), diffraction geometry: Laue-Laue; three- 
beam case: h -- 040, g = 042; metric: orthorhombic, a -- 5.582, 
b = 9.812, c = 11.796 A; F(O) = 321, IF(h)l = 15, If(g)l = 20, 
IF(h - g)l = 35; A = 1.5405 A; plate thickness: 0.05 mm; incident 
beam: a polarized. 
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as a function of the crystal thickness compared with 
the PendellSsung period of the integrated two-beam 
intensity is shown in Fig. 22. It can be seen that, if 
the thickness is below the first maximum of the three- 
beam Pendellrsung period of the profile that corresponds 
to ~b 3 = - 9 0  °, the expected three-beam profiles were 
observed, i.e. the three-beam interference is not dis- 
turbed by PendellOsung interferences (cf. Figs. 19 and 
20). However, if the thickness of the crystal plate is 
comparable with the first maximum of the PendellOsung 
of the three-beam case, unambiguous interpretation with 
respect to the sign of the triplet phase is not possible. It 
should be noticed that the qJ-scan profiles for ~/'3 -- +90° 
remain symmetrical independent of the thickness, i.e. 
independent of the PendellOsung interferences, owing to 
the centrosymmetry of the dispersion surface. Therefore, 
it is always possible to determine the modulus of the 
triplet phase. The determination of its sign, however, 
is questionable in the Laue case for thick crystals (cf. 
Fig. 21). It should further be pointed out that, if the 
PendellSsung interferences are not taken into account, 
that means summing up the intensities of the waves of 
different tie points rather than the amplitudes according 
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Fig. 21. Integrated three-beam ~ - scan  profiles of  Fig. 19 convoluted 
with a Gaussian with cr = I1"  (solid: ~3 = - 9 0 ° ;  dashed: 
@3 = 90°)  calculated for a thickness of  0.175 ram. 
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to (30) and (31), then the information on the sign of the 
triplet phase gets lost, since the eigenvectors for different 
signs of ~3 are complex conjugated (Chang, 1987). 

4.4. Phase-independent Umweganregung and Aufhel- 
lung effects 

In the calculation of the integrated three-beam ~P-scan 
profiles of Fig. 6, the magnitudes of the involved struc- 
ture factors are chosen so that the constructive and 
destructive interference effects are approximately of 
equal size comparing the profiles of triplet phases with 
opposite signs. Ideally, as can be understood by means 
of the two-beam approximation (cf. §3.2) and as can 
be seen in Fig. 6, the relative intensity change I rc~ - h  (~)+ 
for a triplet phase with positive sign taken at a certain 
azimuth angle ~ is inverted with respect to that taken 
at the corresponding negative angle - if '  of the profile 
for the negative triplet phase l~Cl(-q')_. This means, if 
w e  s u m  u p ,  

' r~' t ~ e ' ( - ~ )  ], (52)  AI(#)  = 5[I h (#)+ + ' h  - 

and if we assume that the intensity modulation is com- 
pletely governed by three-beam interference according 
to (37), then AI(#)  should remain constant and equal 
to one. This condition is approximately satisfied by the 
profiles of Fig. 6. 

However, it turns out that in the case of N- 
beam diffraction there are also phase-independent 
contributions that lead to a modification of the two- 
beam intensity of each Bragg reflection involved. 
Such effects have been well known for a long time. 
Enhancement of the two-beam Bragg intensity was 
called Umweganregung (Renninger, 1937). Attenuation 
was called Aufhellung as, for instance, a divergent- 
beam photograph of a diffraction cone of a strong 
reflection is less darkened at the position at which 
multiple diffraction occurs. These effects are due to the 
dynamical self-consistent balance of the energy flow. 
For example, if in a three-beam case the structure factor 
of the primary h reflection is much weaker than those of 
the secondary g and of the coupling h -  g reflection then 
part of the intensity of the g reflection is coupled into 
the h reflection via h - g. As a result, enhancement of 
the two-beam intensity is observed, as that was the case 
in the Renninger experiment, independently of the phase 
relationships. In contrast to this situation, if the intensity 
of the primary h reflection is much stronger than that of 
the secondary g reflection, then a considerable amount 
of the intensity of the first is diffracted into the second 
via - ( h  - g). This loss of intensity is not compensated 
by the diffraction power of the g reflection into the h 
reflection. Consequently, the intensity of the primary 
reflection is attenuated. The mean energy flow due 
to this mutual coupling is described by the so-called 
energy-transfer equations (Zachariasen, 1967; Moon & 
Shull, 1964), which is a system of coupled equations 
that must satisfy the condition of conservation of energy. 
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The interaction terms are taken to be proportional to the 
respective intensities of the individual reflections. Thus, 
the interaction is assumed to be phase independent. 
If in a three-beam case this mutual coupling of the 
intensities is well balanced, then no changes of the two- 
beam intensity would result, except for those due to 
interference effects that modulate the mean energy flow. 
This situation would lead to so-called ideal three-beam 
~-scan profiles where ZII(~) = 1. 

In Fig. 23, typical Umweganreganregung profiles 
are shown and, in Fig. 24, typical Aufhellung profiles 
for different triplet phases. In each case, the Al(kO) 
curve is plotted. According to definition (52), the differ- 
ence between a ~-scan profile with Umweganregung or 
Aufhellung and the corresponding Al(k~) curve gives the 
ideal profile. Thus, in general, each ~-scan profile can 
be separated into two parts: (I) the symmetrical AI(~)  
curve that represents the phase-independent part owing 
to Umweganregung and Aufhellung and (2) the ideal 
profile that bears the information on the triplet phase. 

This is the reason we always measure the pair of 
centrosymmetrically related three-beam cases 0 / h / g  and 
0 / - h / - g .  They differ in the sign of their triplet phase, 
however, the magnitudes of the involved structure fac- 
tors are the same. Therefore, Umweganregung or Aufhel- 
lung have the same magnitude in both cases. Calculation 
of the Al(k0) curve means that the phase-independent 
effects can be separated. 

In a paper by Chang & Tang (1988), Umweganregung 
is denoted as 'kinematical diffraction intensity IK'. These 
authors propose to separate the phase-independent part 
for the quantitative determination of the triplet phase 
from a single k0-scan profile by calculating the I K curve, 
which is a Lorentzian around the three-beam point ~ -- 0 
whose parameters are determined by the diffraction ge- 
ometry, the magnitudes of the involved structure factors, 
the intrinsic peak width of diffraction, the divergence of 
the incident beam and the crystal mosaic spread. The 
relative complicated expression for I K is obtained by 
resolving the dynamical three-beam equations by first- 
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Fig. 23. Integrated three-beam ~O-scan profiles with Umweganregung: (a) '/'3 = 0 °,  (b) ,133 = ::t:45 °,  (c) ~3 = 4-90 °,  (d) profiles o f  (c') corrected 
for ~/( t / , ) ;  solid: negative q33; dashed: positive ¢'3: dot-dashed: ~ l ( t / , )  curve. Diffraction geometry:  Bragg-Bragg ;  three-beam case: h = 
040, g = 042; metric: or thorhombic,  a = 5.582, b = 9.812, c = 11.796 ~ ;  F(0)  = 321, IF(h)] - 10, ]F(g)l -- 40, ]F(h -- g)l --  40, ix --  
1.5405/~, surface n()rmal: n = 040: plate thickness: 0.05 mm; incident beam: cr polarized. 
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order two-beam approximation. The crucial point of this 
method is the determination of the three-beam point 
~' = 0 that must be fixed with an accuracy of some 
arcseconds. 

In Figs. 23 and 24, it can be seen that the interference 
effects of the + 9 0  and - 9 0  ° profiles are overcompen- 
sated by Umweganregung and Aufhellung. Nevertheless,  
it is possible to exploit the triplet phase unambiguously.  
In Fig. 23, for instance, Umweganregung amounts to 
30% and the modulation due to three-beam interference 
is + 1 0 %  for 'P3 = T90° ,  respectively. 

If the phase-independent effects are strong compared 
with the interference effects then the evaluation of the 
phase relationships gets more and more difficult. This 
happens particularly if the primary reflection is weak. 
Then the phase information, if there is any, is contained 
in the asymmetry  of the wings of an Umweganregung 
peak (cf. Shen & Colella, 1988; Tang & Chang, 1988). 

It should be pointed out that these phase-independent  
effects are inherently contained in the solutions of the 

dynamical  N-beam theory. Obviously,  they depend on 
the ratio of the magnitudes of the structure factors IF(h)l 
and I F ( g ) F ( h -  g)l, which determine the amplitudes of 
the primary reflection and the Umweg wave, respec- 
tively. As to theoretical results and our experimental  
experience, the ratio 

Q= IF'(g)F'(h-g)l/lF'(h)l 2 (53) 

should cover the range 2 < Q < 6 in order to keep 
Umweganregung and Aufhellung small provided that 
IF'(g)] and ]F ' (h  - g)l are also of the same order of 
magnitude. The F '  are the structure factors corrected for 
the geometrical polarization factors. It has turned out 
that this rule of thumb is not independent of the absolute 
magnitudes of the structure factors compared with F(0).  
This fact is illustrated in Fig. 25 where the magnitude 
of the phase-independent effects and the interference 
effects for Laue diffraction geometry as a function of 
Q are compared. In the case of very weak reflections, 
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for example IF(h)/F(O)I = 0.0036, the magnitude of the 
interference effect (label 1) stays well above the phase- 
independent Umweganregung effect (label 1') even for 
high values of Q. On the contrary, for strong reflections, 
for example IF(h)/F(O)I = 0.0162 (labels 3 and Y), 
Umweganregung exceeds the interference effects for Q 
larger than seven. As a result, the empirical rule for 
Q works quite well for medium and strong primary 
reflections. For very weak reflections, there seems to be 
no restriction. Aufhellung effects, which means AI from 
(52) is smaller than one, seem to be negligible in Laue 
diffraction geometry. 

In the Bragg geometry, however, Aufhellung is the 
predominant phase-independent effect especially for low 
values of Q. This is shown in Fig. 26. For small 
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Fig. 25. Magnitude of interference (labelled without primes) and 
phase-independent effects (with primes) due to (52) as a function 
of Q (53) for different ratios of IF(h) /F(0)[ .  [F(h)/F(O)[ = 
0.0036 (solid line, I, 1'), IF(h)/F(O)I = 0.0067 (dashed line, 2, 
2'), IF(h)/F(O)] = 0.0162 (dot-dashed line, 3, 3'). Geometrical 
parameters and structure-factor phases were taken from the three- 
beam case shown in Fig. 38; diffraction geometry: Laue-Laue; plate 
thickness: 0.3 ram; incident beam: n- polarized. 
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Fig. 26. Magnitude of interference (labelled without primes) and 
phase-independent effects (with primes) due to (52) as a ['unction 
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0.(X)31 (solid line, I, I'), IF(h)/F(O)I = 0.016 (dashed line, 2, 
2'L [F(h)/F(O)] = 0.053 (dot-dashed line, 3, 3'). Geometrical 
parameters and structure-factor phases were taken from the three- 
beam cases shown in Fig. 23; diffraction geometry: Bragg-Bragg; 
plate thickness: 0.05 ram; A = 1.3/~; incident beam: 7r polarized. 

ratios o f  IF(h)/F(O)I, Umweganregung and AufhelZung 
effects (labels 1', 2') are again negligible or at least 
significantly smaller than the interference effects (labels 
1, 2). Whereas, in the case of  larger ]F(h)/F(O)[ (label 
3) for small Q, Aufhellung is nearly as strong as the 
interference effect, which is, however, dominating for Q 
larger than two. 

In the discussion above, the calculations were carried 
out with IF(g)[ = [F(h - g)[. This symmetry between g 
and h - g is of  course a simplification compared with 
real three-beam cases. The special situation where one 
of  IF(g)[ or [F(h - g)[ is very small or close to zero has 
not been considered so far and will be discussed now for 
its practical relevance in order to estimate the effect of  
neighbouring weak three-beam cases on an interesting 
one. For l F ( h -  g)l very small or zero, the incoming 
intensity will be shared between reflections h and g with 
small or no coupling between both, which will cause 
Aufhellung. No phase information can be extracted from 
three-beam cases like this. The situation is symmetric 
between IF(g)] and IF(h - g)l, this means that an IF(g)l 
close to zero will also lead to Aufhellung as intensity is 
removed from reflection h by the coupling vector h - g 
into the direction K(g). In Fig. 27, an example of  the 
relative aufhellung as function of  [ F ( h -  g ) l / l r ( h ) [  is 
drawn for different values of  [r(h)[/r(o). For these 
calculations, IF(g)] is set to zero. The curve for the 
largest value of  IF(h)[/F(O) represents the situation that 
is encountered in the case of a small-molecule compound 
and the smaller values are closer to the situation for a 
protein crystal. It is obvious that in the latter case the 
Aufhellung of a reflection with a certain [F(h)[ is less 
pronounced owing to the excitation of  a second reflection 
with a comparable structure-factor modulus than for a 
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small-molecule compound. As a rule, Aufhellung is less 
striking if diffraction power is weak. In fact, this is 
important for the phase determination of macromolecular 
structures (cf. §6.3). 

4.5. Anomalous asymmetries 

In §3.3, the effect of the change of sign of the coupling 
scalar products in (12) and (13) on the interference pro- 
files has already been discussed. A numerical example 
demonstrating this effect is given in Fig. 28 (Schwegle, 
1989). For the diffraction geometry of the three-beam 
case of Fig. 28(a), only the 'Umweg' U~,~ channel is 
active for a 7r-polarized incident beam whereas U~,~ is 
negligible a s  7[g~ h ~ O. However, since 7t0n g :~ 0, the 

component of the incoming beam is shared between 
the primary and secondary reflections, which obviously 
leads to Aufhellung effects. As rtotrgtrgTt h is positive, 
i.e. no geometrical phase shifts are induced, a typical 0 < 
three-beam profile with Aufhellung results. In Fig. 28(b), 
the situation is reversed. The amplitude of U~. is now 
weaker than the amplitude of U~.  Since rtortgTtgTt h is 
negative, we end up with an additional phase shift of 
180 °, which reverses the asymmetry of the interference 
profile. This corresponds to the second case in Table 1. 

5. Experimental determination 
of three-phase invariants 

5.1. Experimental set-up and procedure 

5.1.1. General requirements. As has been shown 
in §4, the intrinsic dynamical width of the three-beam 
interference profiles is of the order of some arcseconds. 
It depends essentially on the relative magnitude of the 
structure factors, on the modulus of the triplet phase 
and on the diffraction geometry. The experimentally 
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g = 321" diffraction geomet ry :  B ragg -Laue ;  metric:  o r thorhombic ,  
a = 7.075, b = 10.27% c = 8.775 A; F(0) = 312, IF(h)l = 20, 
IF(g)l = 40, IF(h - g)l = 30: plate thickness: 0.05 mm;  incident 
beam: rr polarized. 

observed width is given by the convolution of the 
dynamical profiles with a broadening function, which 
depends on the angular divergence and the spectral band- 
width of the incident beam as well as the mosaic spread 
of the investigated sample. These instrument and sample 
smearing effects also reduce the interference contrast. 
Consequently, the use of a well collimated incident beam 
and crystals with high perfection is advantageous. 

Another point to be regarded concerns the density 
o f  three-beam positions as the crystal is rotated about 
the scattering vector of the primary reflection. A rough 
estimation for a small-molecule structure where the unit- 
cell volume is about 600 &3 shows that for a reasonable 
length of Ihl = 0.3& -l  using Cu Kc~ radiation the 
mean angular distance between two three-beam positions 
is approximately 0.05 ° on the ~P scale. As these are 
not equidistant, it is therefore possible for structures 
of that size to find for a selected three-beam case 
gaps in the sequence of three-beam positions by tun- 
ing the wavelength so that the angular distance to 
its neighbours is larger than 0.1 °. Then, overlap of 
adjacent profiles can be avoided. This is shown in 
Fig. 29 for a small-molecule compound and in Fig. 
30 for a small protein where only three-beam cases 
with q -  I F ( g ' ) F ( h -  g ' ) l / IF(g )F(h-  g)l > 0.25 that 
will give significant effects are p l o t t e d . . h / g ' / h -  g' 
denote neigbouring three-beam cases. Thus, tunability 
of wavelength is another requirement for triplet phase 
data collection with regard to the solution of unknown 
structures that needs a large number of triplet phases. 
The problem of inevitable overlaps for macromolecular 
structures will be discussed in §6.3. 

5.1.2. X-ray sources. The preceding considerations 
show that high-brilliance sources should be used. There- 
fore, for home laboratory experiments, a high-brilliance 
rotating-anode source is advantageous. A rough estimate 
for crystals with dimensions of 0.3 mm using the bathed 
crystal technique, an effective source size of 0.3 x 
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0.3 mm and a source-to-crystal distance of l m gives 
a divergence of 0.42 mrad (,~ 0.024°). 

The major advantages using synchrotron radiation 
(SR) are, firstly, the possibility of tuning the wave- 
length and, secondly, three or more orders-of-magnitude 
higher brilliance comparing the characteristic line of a 
6 k W  mm -2 rotating anode with SR from a bending 
magnet at the ESRF. Experiments were carried out 
with synchrotron radiation either from a bending magnet 
(BM) of DORIS (HASYLAB, Hamburg, Germany) or 
from a bending magnet of the ESRF (Swiss-Norwegian 
Beamline, Grenoble, France). Very commonly, a fixed- 
exit double-crystal Si 111 monochromator operating 
in vertical mode giving a bandwidth of approximately 
0.01 to 0.03% is used. The selected wavelengths for 
our experiments cover the range from 0.5 to 2.5 A.. 
The divergence is given by the size of source and 
crystal and the distance between them. With the crystal 
size assumed to be 0.3 mm, the divergence at DORIS 
was about 0.002 ° in the vertical and 0.006 ° in the 
horizontal direction and at the ESRF about 0.0007 ° in 
both directions. 

It should be noticed that the bandwidth is not the 
crucial point. In principle, white radiation can be used, 
since multiple-beam interference is restricted to the 
wavelength band that is accepted by the primary reflec- 
tion (cf. §2.1). 

The experimental beam conditions will be given in 
the caption of each experimental profile shown, where 

o" polarization denotes scattering perpendicular to and 7r 
polarization in the plane of the synchrotron, respectively. 

An indispensable demand on the quality of SR is 
beam-position stability. For good-quality lysozyme crys- 
tals, for example, the typical FWHM of reflections is 
0.005 ° (cf. Fig. 31). This means that short-term beam 
instabilities of the order of seconds lead to serious 
noise in the reference two-beam intensity. Long-term 
instabilities can be averaged out, since in our measuring 
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Fig. 30. Three-beam position dependence on if' and A for tetragonal 
lysozyme with I/,. = 238 000.~3. Only three-beam cases with 
q > 0.25 (see text) for the primary reflection 470 are shown. The 
thick line shows the position of the three-beam case 470/251/221. 

routines each O-scan profile is the sum of repeated fast 
scans with a typical measuring time of about 0.1 s per 
step. This is why monitoring of the long-term decrease 
of the SR intensity owing to the decay of the ring 
current is not necessary. First multiple-beam diffraction 
experiments at the ESRF have shown that beam stability 
is not a serious problem with this source and this 
should be the case for all the storage rings of the third 
generation. 

5.1.3. The O-circle diffractometer. Measurement of 
interference profiles does not only make high demand on 
the X-ray sources but also on the diffractometer. High 
precision of the angular resolution and of the O-scan 
accuracy is required. This means that the scattering 
vector of the basic reflection must not perform any 
irregular motion during the O scan, i.e. it has to be 
aligned very accurately with the O axis so that it always 
lies exactly on the Ewald sphere. 

In our experimental experience, exact O scans are 
difficult with a conventional four-circle diffractometer 
(see also Mo, Hauback & Thorkildsen, 1988). Therefore, 
a special O-circle diffractometer has been constructed 
(Fig. 32). This instrument contains two circles 0, u for 
the detector with axes perpendicular to each other and 
four circles for the crystal motion. The first crystal axis 
w is parallel to the first detector axis (w - 28 relation). 
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Fig. 31. ~' scan of the 740 reflection of a tetragonal lysozyme 
crystal at )~ = i.33 ~: experimental conditions: ESRF, Si !11 
monochromator, ~r polarization. 
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Fig. 32. t'-circle diffractometer. 
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Perpendicular to the ~v axis, a second axis for the qs 
rotation is installed. This q' axis bears an Eulerian cradle 
with motions X and 4,. Thus, an arbitrary scattering 
vector h can be aligned with the ~ axis and a ~ scan is 
possible by moving only one circle. With the u circle, the 
detector can be moved to any position on a half sphere 
above the horizontal diffraction plane of the primary 
reflection. In this way, the ~ angle for the three-beam 
position can be controlled measuring the second Bragg 
reflection by means of a qJ scan about the primary 
reflection. 

All circles are driven by stepper motors that are com- 
puter controlled. The angular resolution of the detector 
axes is 0.001 °, that of the crystal axes at least 0.0002 °. 

5.1.4. Crystals. The crystals usually used for experi- 
mental phase determination have dimensions in the range 
from 0.1 to 0.5 mm. No special preparation technique 
was applied. They were used as they were grown. 
Sometimes their habit was quite irregular. The investi- 

gated protein crystals were mounted in closed capillaries 
together with some mother liquor so that they did not 
lose their solvent. 

It should be mentioned that absorption in the case 
of irregularly shaped crystals is not critical since the 
total O-rotation range for each three-beam setting is 
about 0.1 °. As already mentioned above, the perfection 
of the crystals should be as high as possible. However, 
ideal perfection is not required. Most of the investigated 
crystals showed some mosaicity. It can be estimated 
from the width of two-beam profiles measured with 
a highly collimated beam. As a rule of thumb, if the 
FWHM exceeds 0.05 ° using SR of typically 0.01 ° di- 
vergence, then it is difficult to measure any interference 
contrast. The influence of the crystal perfection on the 
interference contrast can be seen in Fig. 33. In this 
figure, the interference and reflection profiles of the same 
three-beam case of the two enantiomorphic forms of the 
same molecule are compared. The crystal of  the (+)-  
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Fig. 33. Comparison of the interference profiles and the reflection proliles of the secondary rellections g of (+)-butafenon (left) and ( - ) -  
butafenon (right) at A = 1.8895 ,~,. (+)-Butafenon: (a) three-beam case: TT3/OI2/T21, ,/~,~c = _ 8 0  o. (b) three-beam case: 113/01 2/12T. 
q~ca.c = 80o; (c') profile of the 012 reflection during @ scan around TT3. (-)-Butafenon:  id) three-beam case: TT3/o I2 /T21 ,  ,/)~l~ = 80 o. 

3 - -  
(e) three-beam case: 11.3/0]2/12T, ~calc - 8 0  °. ( f )  profile of the 012 rellection during ~ scan around 113. [ F ( I I 3 )  I = 23.4, 

3 
IF(012)I = 44.0, [F(T~_I)I = 48.7; experimental conditions: DORIS, Ge I11 monochromator, ~ polarization. 
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enantiomer was of good quality and shows sharp well 
defined interference profiles (Figs. 33a-c). The perfec- 
tion of the (-)-enant iomer was poor (see Fig. 33f). 
Therefore, the interference effects are much weaker, 
wider and less defined compared with the (+)  form. The 
aim of this investigation was the determination of the 
absolute structure (see §6.1). This means, however, that 
only the sign of the triplet phases has to be determined 
as the modulus is already known. It is obvious from 
Figs. 33(d), (e) that this can be achieved from crystals 
of poor quality, too. 

Some crystals of macromolecules have rocking curves 
like that shown in Fig. 34, i.e. they consist of several 
large relatively perfect blocks whose angular distribution 
is very well resolved. Such crystals can still be used for 
phase determination because the highly collimated SR 
allows the excitation of only one block for three-beam 
diffraction, which shows the effects of a single small 
good-quality crystal. 

5.1.5. Measuring procedure. In order to select suit- 
able three-beam cases of a given crystal for the deter- 
mination of the triplet phases, the following data are 
needed: (i) the metric parameters of the unit cell; (ii) an 
Fob~ data set as complete as possible including also the 
low-resolution reflections in the case of protein crystals; 
(iii) the orientation parameters for the individual crystal. 

Selected three-beam cases have to satisfy the fol- 
lowing conditions: (i) approximately 2 < Q < 6 [cf. 
(53)] in order to avoid Umweganregung and Aufhellung 
effects; (ii) search of a wavelength where the angular 
distance to nearest neighbours is large enough to avoid 
overlap of adjacent three-beam interference profiles. 
Given the if' position for a distinct wavelength of the 
selected three-beam case, the diffraction vector h of 
the primary reflection is first aligned accurately with 
the diffractometer ~ axis by means of rotations in q~ 
and X. This procedure also finds the precise ~ position. 
Secondly, the exact ¢ value of the three-beam position 
is determined experimentally by a ~ scan about the pre- 
calculated ~/' value monitoring the secondary reflection 
g. Its maximum gives the three-beam position (~ = 0 
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Fig. 34. ,.,: scan of the 24,0,0 reflection of a catalase oxidoreductase 
crystal at A = 1.54 ~ showing clearly at least two well separated 
mosaic blocks. One of these blocks can be selected for a three-beam 
interference experiment. Experimental conditions: DORIS. Si Ill 
monochromator, cr polarization. 

of the diffraction patterns). Then the detector is moved 
back to the 20 position of the primary reflection and the 
actual ~/'-scan measuring routine is started. 

It should be noticed that, by using a k0-circle diffrac- 
tometer, any error with respect to the ~ rotation sense, 
i.e. whether it is an in-out or out-in ko scan (Fig. 4), is 
excluded because it can be read directly from the rotation 
sense of the ~ axis. No further geometrical analysis is 
needed. All experimental profiles will be drawn with 
in-out rotation sense. The solid line that is plotted in ad- 
dition to the measured intensities represents a smoothing 
spline function where statistical considerations are used 
to determine the amount of smoothing required (Craven 
& Wahba, 1979). 

5.2. Basic results 

Fig. 35 shows that the two-beam intensity of the 
primary reflection is modified owing to the excitation of 
a secondary reflection. The intensities of both reflections 
are measured scanning ~ through the three-beam posi- 
tion and keeping the primary reflection in its diffraction 
position. They are plotted on the same angular scale. 
It can further be seen that interference only takes place 
within the band width accepted by the primary reflection, 
which is in that case the Mo K(~ emission line of a 
rotating anode. 

As a result of the two-beam approximation (§3.2), it 
has been shown that the triplet phase that determines the 
three-beam k0-scan profiles is given by (33). In the case 
of negligible anomalous scattering, - ~ ( h )  - qo(-h) and 
(33) can be rewritten as 

b 3 = :(g) + :(h - g) + :(-h). (54) 

However, (54) is not valid if anomalous scattering has 
to be taken into account since considerable phase shifts 
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Fig. 35. (a) Three-beam interference profile of 200/102 from 
l,-asparagine monohydrate with Mo Ko radiation. (b) Reflection 
profile of 102 during the • scan around 200. The Kol line 
is selected by the primary reflection and participates in the 
interference. Experimental conditions: 5 kW, 0.3 × 0.3 ram, 
effective focus rotating anode with Mo target, .:~ filter, distance 
focus-crystal: Im. 
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may occur leading to a difference between the definitions 
(33) of 4"3 and (54) of 63 . 

Fig. 36 shows that in the case of anomalous-dispersion 
effects only 4"3 according to (33) is valid. In GaAs for 
A = 1.1236/~, strong anomalous phase shifts occur, in 
particular for the weak primary reflection h = 222 of the 
three-beam case h / g / ( h  - g) = 222 /151 /131  (Chang, 
1986, 1987; Hiimmer & Weckert, 1990). Accordingly,  
the calculated phase relationships are given by 4, 3 = 
165.9 ° and 63 = 31.9 ° when Ga is set at at 000 and 

i t  i The asymmetries of Fig. 36(a), where, as As at ~ .  
always in this paper, an in-out  scan is plotted, are 
only consistent with 4"3, since for ~ < 0 destructive 
interference is obvious. If, on the other hand, 63 is 
the involved triplet phase then the two-beam intensity 
would be increased for ¢ < 0 (cf. Fig. 6). The same 
arguments hold for Fig. 36(b), where 68 = - 1 4 0 . 4  ° 
and 4 3 - - 6 . 4  ° . The solid lines in Fig. 36 are the 
results of exact calculations using plane-wave dynamical  
theory and taking into account the divergence and energy 
spread of the incident beam as well as the acceptance of 
the crystal. The anomalous-dispersion corrections were 
calculated according to Cromer & Libermann (1981). 

5.3. Quantitative phase determination 
It has already been discussed in §4.4 that Umwegan- 

regung and Aufhellung effects may drastically influence 
the C-scan three-beam profiles and thus the indication 
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Fig. 36. (a) Measured (stars) and calculated (solid line) three-beam 
~0-scan profiles of GaAs. (a) Three-beam case: 222/151: (b) 
three-beam case: 222/15 1. Diffraction geometry: Bragg-Bragg; 
F(0) = 238.7 + il6.05. 1F(222)1 = 11.7, 0(222) = 113 °, 
F(222) = F(222), IF(151)l = 68.1, 0(151) = 319.6 °, 
]F(T5]-)I = 82.9, o(I 51) = 54.8 °, iF( 151 )1 = 100.5, o(151) = 
319.3 ° , ]F(131)I = 116.3, O(131) -- 51.8 ° , A -- i.1236/~,, 
surface normal: n -- 111; plate thickness: 0.2 mm; experimental 
conditions: ESRF, Si II1 monochromator, rr polarization. 

with respect to the triplet phase involved. Therefore, 
these phase-independent effects have to be subtracted 
from the measured profiles in order to get the pure 
phase-dependent interference profiles that then give an 
unambiguous phase indication. One possibility to eval- 
uate these effects is to measure the two centrosymmet-  
rically related three-beam cases 0 / h / g  and 0 / - h / - g ,  
which ideally should show identical phase-independent  
profiles since they depend on the magnitudes of  the 
structure factors. The triplet phases in both cases have 
different signs. Thus, by calculating the A I ( ¢ )  curve as 
defined in (52), it is possible to obtain the undisturbed 
interference profiles (ideal profiles). However,  since in 
both measurements the crystal is differently oriented 
with respect to the incident beam and usually non-cut 
crystals with grown faces are used, the magnitudes of 
the phase-independent intensities as well as the inter- 
ference contrast may be different. This considerably 
complicates the numerical evaluations. For the same 
reasons, theoretical fitting of the profiles is only possible 
in exceptional cases where the geometry is accurately 
known. Therefore, in our experience, only the centre of 
the phase octants of the triplet phases can be determined, 
i.e., generally, phase determination will be restricted to 
the values 0 mod + 45 °. However,  this accuracy will be 
sufficient for structure determination. 

Other methods for quantitative phase determination 
have been proposed in several papers (cf. Chang & 
Tang, 1988; Tang & Chang, 1988, 1990; Chang, 1992). 
One method is the separation of the phase-independent 
profiles denoted by It< by calculating a Lorentzian that 
depends on the diffraction geometry,  the magnitudes of 
the involved structure factors, the diffraction peak width, 
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Fig. 37. Measured three-beam ~O-scan profiles with an estimated 
triplet phase of 0 ° from tetragonal lysozyme at A = 1.367/~: 
(a) three-beam case: 14t7,3/2]-0, _~al~ = 4 ° (entry llse of 
PDB); (b) three-beam case: 14, 7, 3/210; IF(14,7,3)1 -- 724, 
If(210)l = 1987, 1F(16,8,3)] -- 834; experimental conditions: 
ESRF, Si 111 monochromator, rr polarization. 
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Fig. 38. Measured three-beam ~/'-scan profiles with an estimated 
triplet phase of q:90 ° from tetragonal lysozyme at A -- 1.3047/~; 
(a) three-beam case: 8,11t8/142, ~alc  ._ _107 ° (entry Ilse 
of PDB); (b) three-beam case: 8, ! 1~8/]~,2; IF(8, I 1,8)1 = 727, 
IF(142)] = 1319, IF(776)1 = 1157; experimental conditions: 
ESRF, Si I11 monochromator, 7r polarization. 

the divergence of the incident beam and the mosaic 
spread of the sample. The expression of this correcting 
function is theoretically obtained from the first-order 
two-beam approximation. 

Figs. 37 to 40 show typical three-beam profiles 
measured at the Swiss-Norwegian beamline (bending 
magnet) at the ESRF using an Si 111 double-crystal 
monochromator. We used good-quality hen egg-white 
lysozyme crystals as test samples. The triplet phases 
calculated from the atomic coordinates of the recently 
published structure model (Kurinov & Harrison, 1995) 
are inserted in each figure. The profiles of the two 
centrosymmetrically related three-beam cases are always 
plotted. Visual inspection reveals the correct phase octant 
(Fig. 6). 

6. Applications 
6.1. Determination o f  the absolute structure 

For each non-centrosymmetric space group, there are 
two enantiomorphic forms that can be mapped onto 
each other by a centre of symmetry, i.e. the two forms 
differ in their handedness, which cannot be distinguished 
from ordinary X-ray diffraction patterns if Friedel's 
law is valid. This ambiguity has different meanings for 
different point groups (Burzlaff & Hiimmer, 1988). For 
enantiomorphic merohedral point groups, its resolution 
means the determination of the absolute configuration 
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Fig. 39. Measured three-beam L/,-scan profiles with an estimated 
triplet phase of 3:45 ° from tetragonal lysozyme with Aufhellung at 
A = !.2669/~; (a) three-beam case: 430/_ I IT_,_3~calc __ - 5 2  ° (entry 
I lse of PDB); (b) three-beam case: 430/111;  IF(430)1 = 980, 
1F(i!i)1=4753, IF(3741)1-1475; experimental conditions: 
ESRF, Si I I I  monochromator, 7r polarization. 
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Fig. 40. Measured three-beam ~/'-scan profiles with an estimated 
triplet phase of 3:45 ° from tetragonal lysozyme with Umwegan- 
regung at A -- 1.2438 A; (a) three-beam case: 4,15,4/210, ~al~. __ 
- 3 5  ° (entry llse of PDB): (b) three-beam case: 74r]5,4/210; 
IF(4, 15,74)1 = 295, IF(2T0)I -- 1987, IF(2,16,74)1 _- 977; experi- 
mental conditions: ESRF, Si I I 1 monochromator, z polarization. 
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for chirai species or the determination of the absolute 
conformation for achiral species. For polar point groups, 
it means fixing the structure with respect to the polar 
direction. For noncentrosymmetricroto-inversional point 
groups, with roto-inversions 4 or 6, it means assignment 
of absolute axes, for example for ZnS-type structures. 
Jones (1986) summarized the resolution of these ambigu- 
ities by the term determination of the absolute structure. 
It ultimately reduces to a determination of the signs of 
structure-factor phases. 

One possible way for the determination of the abso- 
lute structure is to exploit the violation of Friedel's law 
owing to anomalous scattering comparing the intensities 
of suitable Bijvoet pairs (Bijvoet, Peerdeman & van 
Bommel, 1951). However, difficulties arise for light- 
atom structures. In contrast with this method, three-beam 
diffraction provides a means of resolving the enan- 
tiomorphism problem without the need of anomalous 
scattering (cf. Htimmer & Weckert, 1995). 

Application of the operation of inversion that maps 
the two enantiomorphic forms, say A and B, onto 
each other, i.e. all the atomic coordinates (xj, yj, zj) 
are changed to ( - x  - yj - zj.) any structure-factor j~  , , 

phase changes its sign from qo(h,,) to -q0(h,,). If the 
mapping includes a shift s of origin, an additional phase 
shift by 27rh,, • s occurs for each reflection h,.  Since a 
triplet phase is structure invariant, i.e. independent of 
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Fig. 41. Measured three-beam g'-scan profiles with an estimated triplet 
phase of ::FI I0 ° from CesH20N2 (space group P2t2121) at A = 
I.O48/k: {a) three-beam case: 032/222, '.b'~ ak = -107 .8° ;  (b) three- 
beam case: 032/222:lF(032)1 - 36 ,  IF(222)1 - 7(1, 1 F ( 2 1 4 ) 1  = 
45; experimental conditions: ESRF, Si 111 monochmmator, 7r 
polarization" the intluence of a second block can be seen.in the 
profiles. 

the choice of the origin, the phase shifts of the three 
reflections h, g, h - g cancel and 

4"3A = --4"3B ( 5 5 )  

provided that the set of atomic coordinates refers to a 
coordinate system of the same hand. Therefore, best 
selectors for distinguishing A and B are triplet phases 
with 4"3 = +90° or close to this value (Rogers, 1980). 
It should be pointed out again that (55) holds without 
anomalous scattering effects. Therefore, if the sign of 
a triplet phase with 14'31 _~ 90 ° can be determined by 
three-beam diffraction, the absolute structure is unam- 
biguously fixed. This is the distinct advantage of the 
three-beam method over anomalous-dispersion methods 
in determining the absolute structure of light-atom com- 
pounds. An example where the determination of the 
absolute structure by means of anomalous-dispersion 
effects would be very difficult if not impossible is given 
in Fig. 41 for C2sH20N2 in space group P212121. 

6.2. Three-beam diffraction of  non-periodic structures 
Up to now, it was implicitly assumed that the 

crystal structures under consideration are translationally 
periodic in three-dimensional space. Therefore, it was 
sufficient to use three integers to label individual lattice 
planes or reflections. There are, however, other classes of 
'crystals', which are no longer translationally periodic 
in three dimensions: 

(a) Incommensurately modulated structures: These 
structures show at least one additional incommensurate 
modulation of some structural details, e.g. atomic po- 
sition or occupancy. In the case of a one-dimensional 
modulation all diffraction vectors, h can be indexed by 
four integers according to de Wolff, Janssen & Janner 
(1981) 

h = ha* + kb* + le* + mq (56) 

with h, k, l, m integers and 

a • q = ¢~1 + ¢~2 b* + ¢~3 c*, (57) 

where at least one of the coefficients t~l, t~2 and % has 
to be irrational. In many cases, a suitable basis system 
a*, b* and c* can be chosen, so that all reflections 
with m - 0 are on average stronger than reflections 
with m ¢ 0. Then the reciprocal lattice spanned by 
a*, b* and c* represents the lattice of the average or 
approximate structure. All reflections with m ¢- 0 are 
considered to be satellite reflections that correspond to 
the incommensurate modulation. 

(b) Quasicrystals: Since the discovery of Shechtman, 
Blech, Gratias & Cahn (1984), crystals are known that 
show no translation symmetry in at least one direction. 
From the large variety of quasicrystals (cf Janot, 1992), 
two classes will be discussed briefly. (i) Decagonal 
quasicrystals show one translation periodic direction. 
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The plane perpendicular to this direction is quasicrys- 
talline. A four-dimensional basis is needed to describe 
the quasicrystalline plane translationally periodic with 
72 ° between each of these basis vectors. (ii) Icosahedral 
quasicrystals show no translational periodicity at all in 
three dimensions. They can be described periodically in 
six dimensions. 

So far, no multibeam interference experiments have 
been reported on incommensurate structures and only 
one experiment has addressed the problem of quasi- 
crystalline crystals (Lee, Colella & Chapman, 1993). 
For a three-beam case, the scattering vectors of the 
primary h and secondary g reflection as well as the 
coupling vector h - g  have to form a triangle (cf. 
Fig. 3). It is possible to obtain geometrical information 
on the physical three-dimensional space from higher- 
dimensional space (N > 3) by a projection from the 
latter one into three dimensions. Therefore, any triangle 
in higher-dimensional space will still be an exact triangle 
in three dimensions if  h and g are not collinear after 
projection. This is the necessary geometrical condition 
that interference between the direct and 'Umweg' wave 
can take place analogous to a three-dimensional lat- 
tice. If sufficient sharp reflections exist, indicating a 
long enough correlation length, then interference effects 
are observable although the reflections are not Bragg 
reflections in the traditional sense. 

Multiple-beam interference experiments have been 
carried out with incommensurately modulated calaverite 
(AuTe2) crystals and with decagonal as well as icosa- 
hedral quasicrystals. In Figs. 42(a) and (b), examples 
with various orders of satellite reflections of calaverite* 
(AuTe e) are plotted. There is a limited number of 
possible combinations of main structure reflections [m -- 
0 in (56)] and satellite reflections to give a three-beam 
case. A three-beam case with two satellite reflections 
of the same order m has a reciprocal-lattice vector with 
rn -- 0 as coupling vector. The case of two reciprocal- 
lattice vectors with m -- 0 and a satellite reflection is 
not possible for geometrical reasons, whereas three-beam 
cases involving only satellite reflections are possible in 
any combination. Owing to the centrosymmetry of the 
structure [superspace group p C2/m (Schutte & de Boer, 

I s 

1988)], only triplet phases 0 and 180 ° occur. In total 
about 25 triplet phases were determined with three-beam 
cases including satellite reflections up to the order rn - 
3. The experimental results from two crystals of different 
size and shape revealed no difference with respect to 
the phase information. The measured triplet phases were 
in agreement with the phases of the known structural 
model (de Boer, 1993). The mosaic spread of both 
crystals was about 0.01 ° and increased slightly during 
the course of the experiment. These test experiments 
show clearly that triplet phases that include phases of 

*Crystals and crystallographic data were kindly provided by J. 
de Boer, Chemische Laboratoria, Rijksuniversiteit Groningen, The 
Netherlands. 

satellite reflections of incommensurate structures can 
be determined by three-beam interference experiments 
provided the crystal quality is sufficiently good. 

Concerning multiple-beam diffraction of quasicrys- 
tals, two questions should be answered: (i) do inter- 
ference effects actually exist?; (ii) is there evidence of 
lack of centrosymmetry? From normal diffraction data, 
icosahedral quasicrystals are found to be centrosymmet- 
ric. In a paper by Lee, Colella & Chapman (1993), 
however, the authors stated they had found evidence 
of noncentrosymmetry for an icosahedral quasicrystal of 

A163.TCU23.rFe12.7 • 
In Figs. 43 and 44, examples of three-beam inter- 

ference profiles of the decagonal phase AlToNitsCol5 
(Kek & Mayer, 1993) and of the icosahedral phase* 
A170Pd20Mnl0 are plotted. The presence of interference 
effects is obvious. The profiles in Fig. 43 indicate a 
0 ° triplet phase and Umweganregung effects (cf. §4.4). 
This clearly shows that it is essential to measure both 
centrosymmetrical related three-beam cases in order to 
evaluate phase-independent Umweganregung or Aufhel- 
lung effects. About 25 pairs of three-beam interference 
profiles were measured for the icosahedral phase. There 

* Crystals of both compounds were kindly made available by S. Kek, 
Fachrichtung Kristallographie, Universit~it des Saarlandes, Germany. 
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Fig. 42. Measured three-beam ~P-scan profiles from calaverite 

(AuTe2); (a) three-beam case: 2401/6220/4221, ~alc _. 180 ° 
(de Boer, 1993), A --- 0.569/~, estimated triplet phase: 180 °, 
1F(2401)1 : [F(6220)1 : [F(4221)1 = 1 : 1.8: !.47; (b) three-beam 
case: 2 643/5 513/3130; A = 0.5631 A; estimated triplet phase: 0 °, 
1F(26,3,3)1 : 1F(5513)1 : [F(3130)l -- I : 0.96: 9.5; experimental 
conditions: DORIS, Si 111 monochromator, 7r polarization. 
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is no evidence of noncentrosymmetry as all the in- 
terference profiles that could be interpreted indicate 
triplet phases of 0 °. Unfortunately, the quality of the 
slightly twinned sample (FWHM of a single block was 
0.015 ° ) and the number of measured triplet phases is 
not sufficient to draw a final conclusion whether small 
deviations from centrosymmetry (point group l O/mmm) 
do exist. 

The reflection indices of the icosahedral crystal refer 
to a six-dimensional coordinate system with the axis in 
the directions of the fivefold axis of the icosahedron 
(Cahn, Shechtman & Gratias, 1986). The reflections 
with a 'd spacing' of 9.137/~ and a multiplicity of 
12 are labelled with all the permutations of the indices 
+200000. As this crystal is F-centred in six-dimensional 
space, only reflections with all indices even or odd were 
observed (Boudard et al., 1992). All measured three- 
beam interference profiles indicate triplet phases close 
to 0 or 180 ° like in Fig. 44. This is a strong indication 
for centrosymmetry (point group m3 5). However, for the 
same reasons as above, a final decision on the basis of 
the available data is not possible. 

In comparison with the decagonal crystals, the in- 
terference contrast of this particular icosahedral crystal 
was two to four times stronger. This is probably due to 
the lower 'mosaicity' or long-range order because the 

FWHM of some reflections was in the range 0.008 °. 
This is only half of the width that was measured for 
the decagonal sample and very close to the value for a 
perfect crystal under these experimental conditions. 

6.3. Direct phasing of macromolecular structures 

Experimental phase determination of protein crystals 
by means of three-beam diffraction reveals some specific 
differences compared with small-molecule structures. 
This concerns the weak scattering power, the very dense 
reciprocal lattice and therefore unavoidable overlapping 
of multiple-beam interference profiles and for nearly 
all structures radiation damage. These problems are 
discussed in (a)-(c) below. 

(a) Weak scattering power: The moduli of structure 
factors for macromolecular structures even of strong 
reflections are small compared with the total number 
of electrons in the unit cell. In the case of tetragonal 
lysozyme, for example, the magnitude of the largest 
structure factor of low-resolution reflections is about 
3-5% of the total scattering power of the cell. This 
number has to be compared with about 30 to 50% for 
small organic compounds and sometimes even more 
for inorganic compounds. The extinction length in the 
case of protein crystals is therefore of the order of 
millimetres and in this case diffraction is considered 
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Fig. 43. Measured three-beam O-scan profiles with an 
estimated triplet phase of 0 ° from a decagonal quasicrystal 
(Al70NitsCo05) at ,~ = 0.6124,~, choice of coordinate system 
according to Kek & Mayer (1993); (a) three-beam case: 
002/!/00T/-3/00102; (b) three-beam case: 0021//00115/00102; 
IF(OO~-fl)lle(oo-fi3)l: IF(00T0~)I -- I : 2: 1.1; experimental 
conditions: DORIS, Si 111 monochromator, 7r polarization. 
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Fig. 44. Measured three-beam ~-scan profiles with an estimated 
triplet phase of 0 ° from an icosahedral phase (AIToPd20Mnt0), 
A = 0.7401/~; (a) three-beam case: 13_1331/131111/062442; 
(b) three-beam case: 1_,31331/1311 11/062442; 1F(131331)1 : 
IF(131111)l : [F(062442)1 = 1 • 3.7 : 1.4; experimental 
conditions: DORIS, Si 111 monochromator, 7r polarization. 
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to behave kinematically for crystal or mosaic blocks of 
usual sizes of the order of some tenths of a millimetre. 
Kinematic scattering in this context means that l(h) ~x 
IF(h)] 2. The reflectivity or transmissivity in this range 
is far below the maximal possible value for a thick 
perfect crystal (Weckert, Schwegle & HiJmmer, 1993). 
Nevertheless, three-beam interference effects occur as is 
shown theoretically in §4.3.2 and experimentally. The 
advantage in this regime is that the interference effects 
are independent of the diffraction geometry, i.e. inde- 
pendent of whether it is a primary Laue or Bragg case. 
Typical measured three-beam profiles for various triplet 
phases are shown in Figs. 37 to 40. As will be discussed 
below for protein crystals, only reflections with large 
structure factors can be used for three-beam diffraction. 
These are normally reflections at small scattering angles 
where Bragg diffraction geometry is hardly possible. 

The modulation of the intensity of the primary reflec- 
tion owing to three-beam interference is normally in the 
range of 2 to 20%. In order to obtain a reliable estimate 
for the triplet phase, the interference profiles have to 
be integrated to give adequate statistics. For the high 
number of phases necessary for structure determination 
and owing to the weak reflection intensities of protein 
crystals, this can only be accomplished in reasonable 
time by the use of high-brilliance synchrotron radiation. 
However, the feasibility of multibeam experiments with 
a laboratory source has also been reported (Huang, Wang 
& Chang, 1994). 

(b) Pseudo three-beam diffraction: A serious problem 
for structures with large unit cells such as proteins 
is the very crowded reciprocal lattice. Therefore, with 
finite resolution it is not possible to excite only one 
single three-beam case. It has been found, however, 
that in spite of the high number of overlapping multi- 
beam cases the exploitation of triplet phases is possible. 
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Fig. 45. Distribution of q [see (53)] of neighbours to three-beam 
case 740/,521/221 at ,\ = 1.3302/~ for tetragonal lysozyme. Only 
three-beam cases with reflections up to 2 ,~ resolution are drawn. 

Configurations can be found at specific wavelengths for 
which there are only two strong reflections h and g 
simultaneously excited besides other weaker reflections 
with their reciprocal-lattice vectors g' inevitably at or 
near that diffraction position (H~immer, Schwegle & 
Weckert, 1991; Weckert, Schwegle & HUmmer, 1993). 
The contributions of these weaker reflections to the 
interference profile of the 'strong' three-beam case, i.e. 
also the coupling reflection h - g has to be comparably 
strong, do not disturb the estimation of the triplet phase. 
The weaker reflections produce a sort of noise on the 
recorded profile. The influence of the overlapping 'weak' 
three-beam cases for the same primary reflection is neg- 
ligible if the amplitude of their Umweg wave governed 
approximately by IF'(g') F ' (h  - g')[ is smaller than that 
of the strong wave. As a rule found experimentally, this 
is the case if 

q = IF ' (g ' )F ' (  h - g ' ) l / l F ' ( g ) F ' (  h - g)l <~ 0.25. 
(58) 

The F ' (h)  are F(h) corrected for polarization. By 
tuning the wavelength, one can find gaps so that the 
profiles of the strong three-beam cases (q > 0.25) 
do not overlap. An example for this is given in Fig. 
30, The minimal necessary ~ distance to the next 
strong three-beam case depends on the angular resolution 
of the incoming beam and on the mosaic spread of 
the sample. For good-quality lysozyme crystals and 
synchrotron radiation from an ESRF bending magnet, 
a distance of 0.03 to 0.04 ° proved to be sufficient. In 
Fig. 45, the q values of neighbouring three-beam cases 
for the 'strong' 740/521 three-beam case of tetragonal 
lysozyme are shown. The corresponding experimental 
three-beam interference profile is shown in Fig. 46(a). 
The weak neighbouring three-beam cases do not affect 
the interference profile of the main one. 

An advantage of the overall weak scattering power of 
protein crystals is that Aufhellung effects are weak as ex- 
tinction is weak (Weckert, Schwegle & Htimmer, 1993). 
This fact and the observation of interference effects 
even in the so-called 'kinematic' range is the basis of 
experimental phase determination also in structures with 
large unit cells like proteins. The disadvantage is that in 
order to obey condition (58) only reflections with large 
structure factors are suitable for phase determination. 

(c) Radiation damage, use o f  short wavelengths: The 
crystals of nearly all protein structures are damaged by 
X-rays. This causes the interference contrast to decrease 
with time. During a series of experiments, we contin- 
uously check a standard three-beam case to monitor 
crystal quality. The magnitude of the interference effect 
proved to be more sensitive to radiation damage com- 
pared with the two-beam rocking curves measured with 
the resolution of an Si l 11 monochromator, which is not 
sufficient to detect small changes in crystal quality. The 
influence of radiation damage on the magnitude of the 
interference effect is illustrated in Figs. 46(a) and (b). 
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There is a reduction by about 50% after 36 h exposure 
with synchrotron radiation from a bending magnet in the 
wavelength range of about 1.3 to 1.45 A. 

Besides other experimental precautions like cooling, 
the use of shorter wavelengths below 1.0/~ may slow 
down crystal decay. However, with use of shorter wave- 
lengths, the radius of the Ewald sphere is increased and, 
therefore, the number of overlapping three-beam cases 
is increased. This problem is of minor importance for 
proteins as strong reflections only appear up to limited 
resolution; this means no additional strong reflections 
have to be taken into account. This situation is different 
for small-molecule structures where high-order reflec- 
tions often have significant scattering power. Although 
the total number of strong reflections for protein crystals 
remains nearly constant, the distance between strong 
three-beam cases with q > 0.25 becomes smaller for 
shorter wavelengths simply for geometrical reasons. 
This will reduce the number of measurable three-beam 
cases. In addition, the interference contrast decreases 
with shorter wavelengths as Thomson scattering gets 
weaker. The theoretically calculated magnitude of the 
interference effect of a particular three-beam case as 
a function of wavelength shown in Fig. 47 gives an 
almost linear relation. This behaviour has been proved 
experimentally. The disadvantage of weaker scattering, 
however, is in part compensated by a higher primary- 

1.40  

1 .30  

" ~  1 .20  

1.10 
1.C~ ~ 
0 . 9 0  

0.80 
- -0 .06  - -0 .03 0 .00  

psi in d e g r e e  
(a) 

1.40  

1 .30  

" ~  1 .20  

1 .io 

1.00 

0.0(2) 

- -0 .06  - -0 .03 0 .00  0 . 0 3  0 . 0 6  
psi in d e g r e e  

(b) 

Fig. 46. Measured three-beam t/'-scan profiles with an estimated triplet 
phase of 180" and Umweganregung from tetragonal lysozyme at 
A = 1.3302,~ corresponding to Fig. 45; (a) three-beam case: 
740/.g21/221, 4'~ at~ = 173.3 ° (entry llse of PDB); (b) same three- 
beam case as in (a) after 36 h exposure to X-rays; IF(740)1 = 1065, 
[F(521)1 = 2027, 1F(221)1 = 2902; experimental conditions: 
ESRF, Si 111 monochromator, 7r polarization. 

beam intensity at wavelengths around 0.7 to 1.2/~ owing 
to the reduced absorption in the beam path. In the case 
of perfect crystals and strong primary reflections, short 
wavelengths can be advantageous owing to the longer 
extinction length. Therefore, additional phase shifts from 
PendellOsung effects (of §4.3.2) in Laue diffraction 
geometry remain small. 

The existence of multibeam interference effects 
in macromolecular crystals was proved for the first 
time with myoglobin crystals (Htimmer, Schwegle & 
Weckert, 1991). Three-beam interference experiments 
with other proteins followed (Chang, King, Huang & 
Gao, 1991). Catalase oxidoreductase is an example with 
a rather large unit cell of more than 1.2 × 106 ~3. 
Nevertheless, evidence for multibeam interactions 
for strong low-resolution reflections could be found 
(Weckert, Schwegle & Htimmer, 1993). For further 
systematic investigations, lysozyme was chosen. The 
triclinic form was used to find the resolution limit up to 
which interference effects can be observed for molecules 
of this size. It was possible to measure three-beam cases 
where reflections up to 2.0/~ resolution were involved 
(of Fig. 48). In total, about 50 triplet phases of triclinic 
lysozyme were determined with a mean phase error 
compared with the known structural model (entry llzt of 
PDB) of less than 20 °. The resolution of the reflections 
involved in measured three-beam cases ranges from 30 
to 2 ,~ with a maximum at about 4 A. 

In order to obtain a starting set of measured triplet 
phases for structure determination in conjunction with 
statistical methods or other phase extension methods, up 
to now about 600 triplet phases were determined from 
tetragonal lysozyme. The mean phase error compared 
with the known structure is about 20 ° [entry l lse of 
PDB (Kurinov & Harrison, 1995)]. In this, 600 triplets 
and about 550 different single reflections are involved. 
The distribution of the resolution of these reflections is 
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Fig. 47. Calculated magnitude of the interference effect of the 
three-beam case 4 3 2 / 2 1 0 / 2 2 2 ,  4~¢~1c3 = - 5 8  ° (entry Ilse of 
PDB) of tetragonal_l_ysozyme as a __functi°n of wavelength; 
IF(7432)1 = 822, IF(2 10)1 = 1987, 1F(222) I = 2181; diffraction 
geometry: Laue-Laue; plate thickness: 0.01ram. 
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shown in Fig. 49. The highest achievable resolution at 
an ESRF bending-magnet beamline was 2,5/~. This is 
considerably less than that for the triclinic form. The 
resolution was not limited by (58) but by the intensity 
of the high-resolution reflections as integration time 
grew unacceptably. The minimum of IF(h)l for primary 
reflections in measurable three-beam cases was about 
250. Then at least one of IF(g)l or ]F(h - g)l has to be 
large (see §4.4). This will be the case for low-resolution 
reflections. This is the main reason for the low-resolution 
'tail' of the distribution. The completeness of the re- 
flections phased by triplets is shown in Fig. 50 with 
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Fig. 48. Measured three-beam k~-scan profiles with an estimated triplet 
phase of 0 ° from triclinic lysozyme at A = i.3583 ,~; (a) three- 

ca lc  o beam case: T-Ot8,13/535/358, q~3" = 6 ; (entry l lzt of PDB); 
(b) three-beam case: I0,8, '1.3/5.35/558; IF(F0,8,13)I =822, 
IF(335)I=]987, IF(358)I=2181; experimental conditions: 
ESRF, Si I ] I  monochromator, ~- polarization. 
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Fig, 49. Distribution of the resolution of triplet reflection measured 
from tetragonal lysozyme. 

respect to two sets of reflections. One corresponds to 
all reflections with significant intensity and the other 
to reflections with IF(h)] > 250, which is the smallest 
structure-factor magnitude accessible experimentally at 
the moment. It is interesting to note that at low resolution 
nearly all possible phases are measured whereas the 
completeness decreases fast towards higher resolution. 

6.4. Structure determination with measured triplet 
phases 

Any structure-determination procedure that should 
incorporate experimentally determined triplet phases has 
to take into account the specific kind of information 
that can be exploited. For example, in the case of 
macromolecular structures, the phases neither of weak 
reflections nor of high-resolution reflections are available 
as is worked out in the last section. The fact that 
the three-beam diffraction gives generally only triplet 
phases and not single phases has also to be regarded. 
A straightforward approach would be to introduce mea- 
sured triplet phases into direct methods since these are 
based on the estimation of such three-phase invariants. 
Measured triplets could be used as a starting set. The 
problem is, however, that reflections with large IF(h)l 
which are relevant for the experiment do not generally 
have large normalized structure factors IE(h)l, which are 
essential for direct methods. Investigations to make use 
of measured triplet phases in conjunction with direct 
methods are in progress. 

First steps of an alternative method should be briefly 
discussed here. Details of this approach will be pub- 
lished elsewhere (Weckert, 1997). By combination of 
measured triplet phase relationships, it is not possible 
to assign single phases to all the reflections involved 
since certain criteria have to be obeyed to keep phase- 
error propagation small because only the phase octant of 
the triplets are determined. Even if the phases of all the 

60.0 

60.0 

._c 

40.0 

20.0 

0.0 
0.00 0.10 0.20 0.30 0.40 0.50 

lhl in 1/. ~, 

Fig. 50. Completeness of phased reflections as a function of resolution; 
solid: relative to reflections with l(h) > 3cr[l(h)]; dashed: relative 
to reflections with IF(h)l > 250. 
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single reflections involved are available, a simple Fourier 
map calculated from say 600 strong reflections will show 
artifacts like negative densities from series-truncation 
effects. The application of the maximum-entropy method 
(MEM) should improve this procedure in two aspects. 
Firstly, by permutation of unknown phases and using 
likelihood criteria (Bricogne & Gilmore, 1990), good 
estimates for permutations with small mean phase error 
can be obtained. Secondly, as in the MEM an expo- 
nential model for the electron density is used, it will 
show no negative values and series-truncation errors are 
minimized. As a maximum-entropy density map also 
contains information on the phases of reflections that 
are not used in the basis set, to a certain degree, phase 
extension is possible. A map calculated by this method 
shows essential features of the molecule. However, so- 
called chain breaks occur. Whether it is possible to 
improve this map by standard methods like density 
modification etc. is under investigation. In Fig. 51, part 
of a maximum-entropy density map is shown, which 
is derived from 630 measured triplet phases where two 
reflections had to be permuted. 

7. Discussion 

It has been shown that three-beam diffraction is a 
powerful physical method for the determination of three- 
phase invariants. This information can be used to resolve 
the enantiomorphous ambiguity of non-centrosymmetric 
structures, in particular to resolve the absolute structure 
of light-atom compounds where anomalous-dispersion 

Fig. 51. Part of a maximum-entropy electron-density map calculated 
only with phases deduced from measured triplet phases. For this 
map. a low-resolution cut-off of 12/~ was used. 

effects are small. Another application, the power of 
which has still to be proved in future and which is still 
under discussion, could be crystal structure analysis of 
macromolecular structures in conjunction with statisti- 
cal methods, particularly if no heavy-atom derivatives 
with good isomorphism are available. The theoretical 
background and the experimental verification have been 
worked out in this paper. Finally, some further aspects 
with respect to the application of this method are dis- 
cussed. 

In §3, it was shown that multibeam interference 
effects take place even in the range where scattering is 
in general believed to be 'kinematic' if crystal thickness 
is small compared with extinction length and the relation 
l(h) ~x IF(h)l 2 holds. This is exactly that range where 
additional phase shifts owing to Pendellrsung oscilla- 
tions in Laue diffraction geometry can be neglected. 
Then the interference profiles do not depend on whether 
the primary reflection is in Bragg reflection or Laue 
transmission geometry. Fortunately, this is the situation 
for the phase measurement of protein crystals. It leads 
to an unambiguous assignment of the phase octant of 
the three-phase invariant also for arbitrarily shaped crys- 
tals. Phase-independent Umweganregung or Aufhellung 
effects have to be eliminated by measurement of the 
profiles of the two centrosymmetrical related three-beam 
cases h / g / h - g  and - h / - g / g  - h. 

All the theoretical calculations in this paper were 
carried out using plane-wave dynamical theory with 
boundary conditions valid for a plane perfect-crystal 
plate. This is only an approximation with respect to the 
actual experimental situation. Approximately, the final 
divergence and wavelength band width can be taken 
into account by convolution with a suitable Gaussian. 
However, the crystals usually used are arbitrarily shaped. 
Nevertheless, the theoretical results reveal the basic 
features of three-beam diffraction that have to be known 
for phase determination. It would be desirable to have 
a more accurate theory taking into account exact shape, 
mosaic spread and defects. 

The application of three-beam interference to small- 
molecule structures, for example to determine the ab- 
solute structure, can be carried out with limited effort 
using a rotating anode and a suitable diffractometer. 
However, the problem of overlapping three-beam in- 
terference profiles gets worse with larger unit cells. 
Three-beam interference experiments benefit from high- 
brilliance ,synchrotron-radiation sources. The overlap of 
interference profiles can be minimized by taking ad- 
vantage of the tunability of the wavelength. The high 
collimation leads to narrower profiles and higher in- 
terference contrast. The higher intensity will reduce 
the measurement time by some orders of magnitude. 
However, to take full advantage of the unique properties 
of synchrotron radiation, the stability of the source as 
well as that of the diffractometer must match the experi- 
mental resolution. The number of triplets measured from 
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lysozyme reported in this paper could never be measured 
with a conventional source. The rule that, for larger unit 
cells and therefore in general smaller scattering power 
of individual reflections, a more intense source has to be 
used is also true for multibeam interference effects. 

The most critical factor for this kind of experiment is 
crystal quality. Although multibeam interference effects 
can only be understood in the framework of dynam- 
ical theory, nearly all interference profiles presented 
in this paper were measured using crystals that show 
some mosaicity. In general, however, the magnitude 
of interference effects decreases with increasing mosaic 
spread. Therefore, a mosaic spread as small as possible 
is desirable. A crystal that shows a distribution of well 
separated nearly perfect mosaic blocks can normally still 
be used for interference experiments if the divergence 
of the incident beam is small enough to select one 
single mosaic block (e.g. Fig. 34). Up to now, we have 
been able to measure triplet phases from six different 
proteins. About every third protein crystal investigated 
was suitable for multibeam interference experiments. 
Many protein crystals showed a rather small mosaic 
spread of the order of 0.01 ° and often at the limit of the 
available resolution of about 0.003 ° . One of the main 
problems with these crystals is their radiation damage. 
To give an example, crystals of tetragonal lysozyme 
can stand an unfocused beam from an ESRF bending 
magnet for about 24 h (Fig. 46). During that time, the 
interference contrast reduces to 50%. The maximum 
number of triplet phases that we could measure from one 
particular crystal in the case of tetragonal lysozyme was 
about 150. To reduce radiation damage, the applications 
of cryotechniques is envisaged, which is routine for 
intensity data collections. However, in nearly all cases 
an increase of the mosaic spread is reported. This will 
probably cause problems for multibeam experiments. 

Successful solution of a crystal structure depends on 
the number and the accuracy of the available phases in 
a resolution range where major structural details can be 
resolved. Whereas the accuracy that has been achieved 
so far by three-beam diffraction with a mean phase error 
of about 20 ° seems to be good enough, the number of 
phases that can be measured is still small compared 
with other phasing methods. The number of measured 
triplet phases per time depends on various factors. In the 
case of small-molecule structures and crystals of good 
quality, it is mainly limited by the driving speed of the 
diffractometer to adjust different three-beam positions 
and by the speed of the monochromator since, generally, 
each three-beam case is measured at a new wavelength. 
With synchrotron radiation, the three-beam diffraction 
profile can be measured with good counting statistics in 
the order of minutes. 

In the case of macromolecular structures, the time 
required for one triplet phase mainly depends on 
the primary-beam intensity, crystal quality, size and 
]F(h)/F(O)I of the reflections involved. With our present 

set-up at a bending magnet beamline at the ESRF 
(Swiss-Norwegian CRG beamline) and good-quality 
lysozyme crystals of 0.4 to 0.6 mm about four to five 
triplet phases in the 3 to 6 ,~ resolution range can be 
measured within 1 h. Typically, each three-beam profile 
contains 300 single steps (step width -,~ 4 × 10 -4°) 
each with 1 s integration time. For crystals of worse 
quality and thus smaller interference effects, a longer 
integration time is needed. The same is true for larger 
protein structures. In that case, the integration time and 
thus the intensity of the primary beam is the limiting 
factor. 

In conclusion, if there are problems in solving struc- 
tures of small and medium-size proteins by standard 
methods like MIR, MAD, molecular replacement etc., 
then it is likely that three-beam diffraction in conjunction 
with statistically based methods might be an alternative 
choice. 
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